In the present paper, three reliable iterative methods are given and implemented to solve the 1D, 2D and 3D Fisher’s equation. Daftardar-Jafari method (DJM), Temimi-Ansari method (TAM) and Banach contraction method (BCM) are applied to get the exact and numerical solutions for Fisher's equations. The reliable iterative methods are characterized by many advantages, such as being free of derivatives, overcoming the difficulty arising when calculating the Adomian polynomial boundaries to deal with nonlinear terms in the Adomian decomposition method (ADM), does not request to calculate Lagrange multiplier as in the Variational iteration method (VIM) and there is no need to create a homotopy like in the Homotopy perturbation method (HPM), or any assumptions to deal with the nonlinear term. The obtained solutions are in recursive sequence forms which can be used to achieve the closed or approximate form of the solutions. Also, the fixed point theorem was presented to assess the convergence of the proposed methods. Several examples of 1D, 2D and 3D problems are solved either analytically or numerically, where the efficiency of the numerical solution has been verified by evaluating the absolute error and the maximum error remainder to show the accuracy and efficiency of the proposed methods. The results reveal that the proposed iterative methods are effective, reliable, time saver and applicable for solving the problems and can be proposed to solve other nonlinear problems. All the iterative process in this work implemented in MATHEMATICA®12. ABSTRAK: Kajian ini berkenaan tiga kaedah berulang boleh percaya diberikan dan dilaksanakan bagi menyelesaikan 1D, 2D dan 3D persamaan Fisher. Kaedah Daftardar-Jafari (DJM), kaedah Temimi-Ansari (TAM) dan kaedah pengecutan Banach (BCM) digunakan bagi mendapatkan penyelesaian numerik dan tepat bagi persamaan Fisher. Kaedah berulang boleh percaya di kategorikan dengan pelbagai faedah, seperti bebas daripada terbitan, mengatasi masalah-masalah yang timbul apabila sempadan polinomial bagi mengurus kata tak linear dalam kaedah penguraian Adomian (ADM), tidak memerlukan kiraan pekali Lagrange sebagai kaedah berulang Variasi (VIM) dan tidak perlu bagi membuat homotopi sebagaimana dalam kaedah gangguan Homotopi (HPM), atau mana-mana anggapan bagi mengurus kata tak linear. Penyelesaian yang didapati dalam bentuk urutan berulang di mana ianya boleh digunakan bagi mencapai penyelesaian tepat atau hampiran. Juga, teorem titik tetap dibentangkan bagi menaksir kaedah bentuk hampiran. Pelbagai contoh seperti masalah 1D, 2D dan 3D diselesaikan samada secara analitik atau numerik, di mana kecekapan penyelesaian numerik telah ditentu sahkan dengan menilai ralat mutlak dan baki ralat maksimum (MER) bagi menentukan ketepatan dan kecekapan kaedah yang dicadangkan. Dapatan kajian menunjukkan kaedah berulang yang dicadangkan adalah berkesan, boleh percaya, jimat masa dan boleh guna bagi menyelesaikan masalah dan boleh dicadangkan menyelesaikan masalah tak linear lain. Semua proses berulang dalam kerja ini menggunakan MATHEMATICA®12.
Beyond the immediate content of speech, the voice can provide rich information about a speaker's demographics, including age and gender. Estimating a speaker's age and gender offers a wide range of applications, spanning from voice forensic analysis to personalized advertising, healthcare monitoring, and human-computer interaction. However, pinpointing precise age remains intricate due to age ambiguity. Specifically, utterances from individuals at adjacent ages are frequently indistinguishable. Addressing this, we propose a novel, end-to-end approach that deploys Mozilla's Common Voice dataset to transform raw audio into high-quality feature representations using Wav2Vec2.0 embeddings. These are then channeled into our self-attentio
... Show MoreIn data transmission a change in single bit in the received data may lead to miss understanding or a disaster. Each bit in the sent information has high priority especially with information such as the address of the receiver. The importance of error detection with each single change is a key issue in data transmission field.
The ordinary single parity detection method can detect odd number of errors efficiently, but fails with even number of errors. Other detection methods such as two-dimensional and checksum showed better results and failed to cope with the increasing number of errors.
Two novel methods were suggested to detect the binary bit change errors when transmitting data in a noisy media.Those methods were: 2D-Checksum me
There are many researches deals with constructing an efficient solutions for real problem having Multi - objective confronted with each others. In this paper we construct a decision for Multi – objectives based on building a mathematical model formulating a unique objective function by combining the confronted objectives functions. Also we are presented some theories concerning this problem. Areal application problem has been presented to show the efficiency of the performance of our model and the method. Finally we obtained some results by randomly generating some problems.
The automatic estimation of speaker characteristics, such as height, age, and gender, has various applications in forensics, surveillance, customer service, and many human-robot interaction applications. These applications are often required to produce a response promptly. This work proposes a novel approach to speaker profiling by combining filter bank initializations, such as continuous wavelets and gammatone filter banks, with one-dimensional (1D) convolutional neural networks (CNN) and residual blocks. The proposed end-to-end model goes from the raw waveform to an estimated height, age, and gender of the speaker by learning speaker representation directly from the audio signal without relying on handcrafted and pre-computed acou
... Show MoreThe presented study investigated the scheduling regarding jobs on a single machine. Each job will be processed with no interruptions and becomes available for the processing at time 0. The aim is finding a processing order with regard to jobs, minimizing total completion time , total late work , and maximal tardiness which is an NP-hard problem. In the theoretical part of the present work, the mathematical formula for the examined problem will be presented, and a sub-problem of the original problem of minimizing the multi-objective functions is introduced. Also, then the importance regarding the dominance rule (DR) that could be applied to the problem to improve good solutions will be shown. While in the practical part, two
... Show More