Preferred Language
Articles
/
3oYYsoYBIXToZYALtbDG
Castellated Beams with Fiber-Reinforced Lightweight Concrete Deck Slab as a Modified Choice for Composite Steel-Concrete Beams Affected by Harmonic Load
...Show More Authors

The behavior investigation of castellated beams with fiber-reinforced lightweight concrete deck slab as a modified choice for composite steel-concrete beams affected by harmonic load is presented in this study. The experimental program involved six fixed-supported castellated beams of 2140mm size. Three types of concrete were included: Normal Weight Concrete (NWC), Lightweight Aggregate Concrete (LWAC), and Lightweight Fiber-Reinforced Aggregate Concrete (LWACF). The specimens were divided into two groups: the first comprised three specimens tested under harmonic load effect of 30Hz operation frequency for 3 days, then the residual strength was determined through static load application. The second group included three specimens identical to those of group I, tested under static load only. The results show that LWAC was more influential than LWACF under harmonic load. The reduction in the residual strength of LWACF and NWC deck corresponding to the harmonic load was 0.94 and 0.7% respectively. The outcome proved that using LWACF as a deck for the castellated steel beams affected by harmonic load presents a significant choice with weight reduction of 16% compared to NWC. Steel fiber’s tensile strength 1700MPa enhanced the absorbed energy and the ductility factor by 0.4 and 0.5% respectively.

Crossref
Publication Date
Tue Oct 30 2018
Journal Name
Journal Of Engineering
Statistical Equations to Estimate the In-situ Concrete Compressive Strength from Non-destructive Tests
...Show More Authors

The aim of this study is to propose reliable equations to estimate the in-situ concrete compressive strength from the non-destructive test. Three equations were proposed: the first equation considers the number of rebound hummer only, the second equation consider the ultrasonic pulse velocity only, and the third equation combines the number of rebound hummer and the ultrasonic pulse velocity. The proposed equations were derived from non-linear regression analysis and they were calibrated with the test results of 372 concrete specimens compiled from the literature. The performance of the proposed equations was tested by comparing their strength estimations with those of related existing equations from literature. Comparis

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Mon Oct 02 2023
Journal Name
Journal Of Engineering
Comparative Study between Recycled Fine and Coarse Aggregate Used in Roller Compacted Concrete Pavement
...Show More Authors

To decrease the impact on the environment of building waste, the recycled aggregate may be used in various sustainable engineering applications, such as roller compacted concrete pavement (RCCP). This research examined how using recycled aggregate as a partial replacement for natural aggregate as coarse or fine affected the mechanical properties of roller-compacted concrete pavement. The recycled aggregate was crushed and sieved to coarse and fine aggregate before being used in the roller-compacted concrete pavement. Compressive strength, splitting tensile strength, and flexural strength were all evaluated after the samples were prepared at 28 and 90 days of curing. According to the study's findings, the partial replacem

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Aug 28 2019
Journal Name
Journal Of Engineering
Influence of Liquid Asphalt on Resilient Modules and Permanent Deformation of Recycled Asphalt Concrete
...Show More Authors

Tests were performed on Marshall samples and were implemented for permanent deformation and resilient modulus (Mr) under indirect tensile repeated loading (ITRL), with constant stress level. Two types of liquid asphalt (cutback and emulsion) were tried as recycling agents, aged materials that were reclaimed from field (100% RAP), samples were prepared from the aged mixture, and two types of liquid asphalt (cutback and emulsion) with a weight content of 0.5% were utilized to prepare a recycled mixture. A group of twelve samples was prepared for each mixture; six samples were tested directly for ITRL test (three samples at 25˚C and three samples at 40˚C), an average value for ITRL for every three samples was calculated (

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Nov 17 2022
Journal Name
Association Of Arab Universities Journal Of Engineering Sciences
Effect of Using Grids On the Behaviour of Portland Limestone Cement Self Compacted Concrete.
...Show More Authors

The civil engineering field currently focus on sustainable development. It is important to develop new sustainable and economic generations of concrete, using eco-friendly materials in the construction industry with a fair amount of costs and minimizing the impact upon the environment by reducing CO2 emissions from the cement industry as a whole while still obtaining high cement quality and strength. The main objective of this research is to clarify the mechanical behavior and ability to use Portland limestone cement in producing self compacted concrete, due to the beneficious effec of the limestone cement economically and enviromently. The research investigates the effect of using steel and polymer meshs as reinforcement, where the results

... Show More
Publication Date
Wed Jan 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Influence of CFRP Strengthening on the Behavior of Concavely-Curved Soffit Concrete Bridge Girders
...Show More Authors
Abstract<p>Over the last few decades, fiber reinforced polymer (FRP) has been increasingly used in strengthening different structural concrete members. The main objective of this research is to study the influence of curvature on the performance of curved soffit reinforced concrete (RC) bridge girders that have been strengthened with carbon fiber reinforced polymers (CFRP). This experimental program was designed to evaluate the effect of concavity and soffit curvature on the CFRP laminate utilization and load capacity, compared to flat soffit RC beams strengthened with the same CFRP system. Accordingly, five beams, 2.7 m in length and having the same degree of soffit curvature (20 mm per 1 meter</p> ... Show More
View Publication
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Influence of CFRP Strengthening on the Behavior of Concavely-Curved Soffit Concrete Bridge Girders
...Show More Authors
Abstract<p>Over the last few decades, fiber reinforced polymer (FRP) has been increasingly used in strengthening different structural concrete members. The main objective of this research is to study the influence of curvature on the performance of curved soffit reinforced concrete (RC) bridge girders that have been strengthened with carbon fiber reinforced polymers (CFRP). This experimental program was designed to evaluate the effect of concavity and soffit curvature on the CFRP laminate utilization and load capacity, compared to flat soffit RC beams strengthened with the same CFRP system. Accordingly, five beams, 2.7 m in length and having the same degree of soffit curvature (20 mm per 1 meter</p> ... Show More
Crossref (1)
Crossref
Publication Date
Sat Aug 01 2020
Journal Name
Key Engineering Materials
Irradiation Duration Effect of Gamma Ray on the Compressive Strength of Reactive Powder Concrete
...Show More Authors

Reactive Powder Concrete (RPC) could be considered as the furthermost significant modern high compressive strength concrete. In this study, an experimental investigation on the impact of micro steel fiber volume fraction ratio and gamma ray irradiation duration influence upon the compressive strength of RPC is presented. Three volume fraction ratios (0.0, 1.0 and 1.5) % was implemented. For each percentage of the adopted fiber ratios, six different irradiation duration was considered; these are (1, 2, 3, 4, 5 and 6) days. Gamma source (Cs-137) of energy (0.662) MeV and activity (6) mci was used. In a case of zero volume fraction ratio, the experimental results showed that gamma ray had a significant influence on the reducing of the

... Show More
View Publication
Crossref (2)
Crossref
Publication Date
Sat Aug 01 2020
Journal Name
Key Engineering Materials
Irradiation Duration Effect of Gamma Ray on the Compressive Strength of Reactive Powder Concrete
...Show More Authors

Reactive Powder Concrete (RPC) could be considered as the furthermost significant modern high compressive strength concrete. In this study, an experimental investigation on the impact of micro steel fiber volume fraction ratio and gamma ray irradiation duration influence upon the compressive strength of RPC is presented. Three volume fraction ratios (0.0, 1.0 and 1.5) % was implemented. For each percentage of the adopted fiber ratios, six different irradiation duration was considered; these are (1, 2, 3, 4, 5 and 6) days. Gamma source (Cs-137) of energy (0.662) MeV and activity (6) mci was used. In a case of zero volume fraction ratio, the experimental results showed that gamma ray had a significant influence on the reducing of the

... Show More
Scopus (1)
Crossref (2)
Scopus Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Sustainable Construction Materials And Technologies (scmt)
TRIAXIAL TEST OF HYDRATED LIME ON THE MECHANICAL PROPERTIES OF HOT MIX ASPHALT CONCRETE
...Show More Authors

This paper reports on the experimental study, which conducted a series of triaxial tests for the asphalt concrete using hydrated lime as a mineral additive. Three HMA mixes, prepared by the specification for wearing, levelling and base layers, were studied under three different temperatures. The test results have demonstrated that, compared with the control mixes excluding HL, the permanent deformation resistance of the HL modified mixes has significant improvement. The deformation has been reduced at the same load repetition number, meanwhile the flow number has been considerably increased. The degree of improvement in permanent deformation resistance using HL is more pronounced at high stress deviation states and high temperature.

... Show More
View Publication
Crossref
Publication Date
Sat Dec 01 2018
Journal Name
Proceedings Of International Structural Engineering And Construction
ON THE REDUCTION OF PRESTRESSING FORCE NEAR SUPPORTS IN PARTIALLY PRESTRESSED CONCRETE FLEXURAL MEMBERS
...Show More Authors

Straight tendons in pretensioned members can cause high-tensile stresses in the concrete extreme fibers at end sections because of the absence of the bending stresses due to self-weight and superimposed loads and the dominance of the moment due to prestressing force alone. Accordingly, the concrete tensile stresses at the ends of a member prestressed with straight tendons may limit the service load capacity of the member. It is therefore important to establish limiting zone in the concrete section within which the prestressing force can be applied without causing tension in the extreme concrete fibers. Two practical methods are available to reduce the stresses at the end sections due to the prestressing force. The first method based

... Show More
View Publication
Crossref