Assessing the accuracy of classification algorithms is paramount as it provides insights into reliability and effectiveness in solving real-world problems. Accuracy examination is essential in any remote sensing-based classification practice, given that classification maps consistently include misclassified pixels and classification misconceptions. In this study, two imaginary satellites for Duhok province, Iraq, were captured at regular intervals, and the photos were analyzed using spatial analysis tools to provide supervised classifications. Some processes were conducted to enhance the categorization, like smoothing. The classification results indicate that Duhok province is divided into four classes: vegetation cover, buildings, water bodies, and bare lands. During 2013-2022, vegetation cover increased from 63% in 2013 to 66% in 2022; buildings roughly increased by 1% to 3% yearly; water bodies showed a decrease of 2% to 1%; the amount of unoccupied land showed a decrease from 34% to 30%. Therefore, the classification accuracy was assessed using the approach of comparison with field data; the classification accuracy was about 85%.
The fetal heart rate (FHR) signal processing based on Artificial Neural Networks (ANN),Fuzzy Logic (FL) and frequency domain Discrete Wavelet Transform(DWT) were analysis in order to perform automatic analysis using personal computers. Cardiotocography (CTG) is a primary biophysical method of fetal monitoring. The assessment of the printed CTG traces was based on the visual analysis of patterns that describing the variability of fetal heart rate signal. Fetal heart rate data of pregnant women with pregnancy between 38 and 40 weeks of gestation were studied. The first stage in the system was to convert the cardiotocograghy (CTG) tracing in to digital series so that the system can be analyzed ,while the second stage ,the FHR time series was t
... Show MoreThe use analysis value chain such information in the provision as financial so information quality meet and satisfy the needs of users such information , particularly investors and lenders as the identification needs financial information and the knowledge as their behavior influenced by that information can be based on the accounting profession to focus on improving their function in order to achieve its goal that satisfying their needs and rationalize their decisions . In accounting thought discovered fertile ground for users preferences as one of the entrances theorising positive which is based on the need to include knowledge on accounting hypothesis that explain the
... Show MoreExamining and comparing the image quality of degenerative cervical spine diseases through the application of three MRI sequences; the Two-Dimension T2 Weighed Turbo Spin Echo (2D T2W TSE), the Three-Dimension T2 Weighted Turbo Spin Echo (3D T2W TSE), and the T2 Turbo Field Echo (T2_TFE). Thirty-three patients who were diagnosed as having degenerative cervical spine diseases were involved in this study. Their age range was 40-60 years old. The images were produced via a 1.5 Tesla MRI device using (2D T2W TSE, 3D T2W TSE, and T2_TFE) sequences in the sagittal plane. The image quality was examined by objective and subjective assessments. The MRI image characteristics of the cervical spines (C4-C5, C5-C6, C6-C7) showed significant difference
... Show MoreThis research aims to study the radiation concentration distribution of the old District of Najaf (Iraq), where 15 samples were taken from featured sites in the District, which represents archaeological, religious, and heritage sites. Track detector CR-39 was used to calculate the concentration of three different soil weights for each sample site after being exposed for a month. Geographical information systems (GIS) were used to distribute the radioactive concentration on the sites of the samples, where two interpolation methods, namely the inverse distance weight method (IDW) and the triangle irregular network method (NIT), to study the distribution of the radioactivity concentration. The study showed that the western part of the district
... Show MoreA substantial portion of today’s multimedia data exists in the form of unstructured text. However, the unstructured nature of text poses a significant task in meeting users’ information requirements. Text classification (TC) has been extensively employed in text mining to facilitate multimedia data processing. However, accurately categorizing texts becomes challenging due to the increasing presence of non-informative features within the corpus. Several reviews on TC, encompassing various feature selection (FS) approaches to eliminate non-informative features, have been previously published. However, these reviews do not adequately cover the recently explored approaches to TC problem-solving utilizing FS, such as optimization techniques.
... Show MoreAbstract Background: Multidrug-resistant bacteria (MDR) often contaminate hospital environment and cause serious illnesses. Quorum Sensing (QS) regulates a variety of downstream cellular processes, including antibiotics resistance mechanisms and biofilm formation, and causes harm to the host. This study investigates antibacterial susceptibility and biofilm formation of pathogenic bacteria in hospital environment. Methods: Hundred bacterial isolates were collected from various environments in the Medical City hospital. The antimicrobial susceptibility technique was evaluated through disk diffusion method. Next, biofilms formation was detected by the microliter plate assay. Finally, PCR was used to analyze the frequency of QS system gene
... Show MoreWith the rapid development of smart devices, people's lives have become easier, especially for visually disabled or special-needs people. The new achievements in the fields of machine learning and deep learning let people identify and recognise the surrounding environment. In this study, the efficiency and high performance of deep learning architecture are used to build an image classification system in both indoor and outdoor environments. The proposed methodology starts with collecting two datasets (indoor and outdoor) from different separate datasets. In the second step, the collected dataset is split into training, validation, and test sets. The pre-trained GoogleNet and MobileNet-V2 models are trained using the indoor and outdoor se
... Show MoreEarly detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med
... Show MoreStatistical learning theory serves as the foundational bedrock of Machine learning (ML), which in turn represents the backbone of artificial intelligence, ushering in innovative solutions for real-world challenges. Its origins can be linked to the point where statistics and the field of computing meet, evolving into a distinct scientific discipline. Machine learning can be distinguished by its fundamental branches, encompassing supervised learning, unsupervised learning, semi-supervised learning, and reinforcement learning. Within this tapestry, supervised learning takes center stage, divided in two fundamental forms: classification and regression. Regression is tailored for continuous outcomes, while classification specializes in c
... Show More