Preferred Language
Articles
/
3hhVW5QBVTCNdQwCjxLS
Supervised Classification Accuracy Assessment Using Remote Sensing and Geographic Information System
...Show More Authors

Assessing the accuracy of classification algorithms is paramount as it provides insights into reliability and effectiveness in solving real-world problems. Accuracy examination is essential in any remote sensing-based classification practice, given that classification maps consistently include misclassified pixels and classification misconceptions. In this study, two imaginary satellites for Duhok province, Iraq, were captured at regular intervals, and the photos were analyzed using spatial analysis tools to provide supervised classifications. Some processes were conducted to enhance the categorization, like smoothing. The classification results indicate that Duhok province is divided into four classes: vegetation cover, buildings, water bodies, and bare lands. During 2013-2022, vegetation cover increased from 63% in 2013 to 66% in 2022; buildings roughly increased by 1% to 3% yearly; water bodies showed a decrease of 2% to 1%; the amount of unoccupied land showed a decrease from 34% to 30%. Therefore, the classification accuracy was assessed using the approach of comparison with field data; the classification accuracy was about 85%.

Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
Classification of Diseases in Oil Palm Leaves Using the GoogLeNet Model
...Show More Authors

The general health of palm trees, encompassing the roots, stems, and leaves, significantly impacts palm oil production, therefore, meticulous attention is needed to achieve optimal yield. One of the challenges encountered in sustaining productive crops is the prevalence of pests and diseases afflicting oil palm plants. These diseases can detrimentally influence growth and development, leading to decreased productivity. Oil palm productivity is closely related to the conditions of its leaves, which play a vital role in photosynthesis. This research employed a comprehensive dataset of 1,230 images, consisting of 410 showing leaves, another 410 depicting bagworm infestations, and an additional 410 displaying caterpillar infestations. Furthe

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Wed Apr 01 2015
Journal Name
2015 Annual Ieee Systems Conference (syscon) Proceedings
Automatic generation of fuzzy classification rules using granulation-based adaptive clustering
...Show More Authors

View Publication
Scopus (4)
Crossref (4)
Scopus Crossref
Publication Date
Thu Jun 08 2023
Journal Name
Iraqi Journal Of Laser
PDF Sensing and differentiation between normal flora and pathogenic of E.coli Bacteria using 410 nm diode laser
...Show More Authors

Abstract: Background: Optical biosensors offer excellent properties and methods for detecting bacteria when compared to traditional analytical techniques.  It allows direct detection of many biological and chemical materials.  Bacteria are found in the human body naturally non-pathogenic and pathologically, as they are found in other living organisms.  One of these bacteria is Escherichia coli (E. coli) which are found in the human body in its natural and pathogenic form. E.coli bacteria cause many diseases, including Stomach, intestines, urinary system infections, and others. The aim of this study: is sensing and differentiation between normal flora and pathogenic E.coli. Material and method:

... Show More
View Publication Preview PDF
Publication Date
Tue Sep 29 2020
Journal Name
Iraqi Journal Of Science
Smart Doctor: Performance of Supervised ART-I Artificial Neural Network for Breast Cancer Diagnoses
...Show More Authors

Wisconsin Breast Cancer Dataset (WBCD) was employed to show the performance of the Adaptive Resonance Theory (ART), specifically the supervised ART-I Artificial Neural Network (ANN), to build a breast cancer diagnosis smart system. It was fed with different learning parameters and sets. The best result was achieved when the model was trained with 50% of the data and tested with the remaining 50%. Classification accuracy was compared to other artificial intelligence algorithms, which included fuzzy classifier, MLP-ANN, and SVM. We achieved the highest accuracy with such low learning/testing ratio.

View Publication Preview PDF
Scopus (5)
Crossref (1)
Scopus Crossref
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
Recognizing Different Foot Deformities Using FSR Sensors by Static Classification of Neural Networks
...Show More Authors

Sensing insole systems are a promising technology for various applications in healthcare and sports. They can provide valuable information about the foot pressure distribution and gait patterns of different individuals. However, designing and implementing such systems poses several challenges, such as sensor selection, calibration, data processing, and interpretation. This paper proposes a sensing insole system that uses force-sensitive resistors (FSRs) to measure the pressure exerted by the foot on different regions of the insole. This system classifies four types of foot deformities: normal, flat, over-pronation, and excessive supination. The classification stage uses the differential values of pressure points as input for a feedforwar

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Fri Jan 31 2025
Journal Name
Aip Conference Proceedings
Classification of oral cavity cancer using linear discriminant analysis (LDA) and principal component analysis (PCA)
...Show More Authors

View Publication
Crossref
Publication Date
Wed Feb 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering
Classification of COVID-19 from CT chest images using Convolutional Wavelet Neural Network
...Show More Authors

<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convol

... Show More
View Publication Preview PDF
Publication Date
Wed Mar 16 2022
Journal Name
Journal Of Educational And Psychological Researches
Administrative Empowerment and Its Relationship to Remote Supervision at Public Schools
...Show More Authors

The study aims to identify the extent of the availability of administrative empowerment and the implementation of remote supervision in relation to two variables with respect to the employees of the Saudi Ministry of Education. The study included (456) male and female supervisors. The questionnaire has been administrated to collected data related to the research aims. The results indicated that both the extent of the availability of administrative empowerment and the implementation of remote supervision is of an average degree. There is a significant correlation relationship (p<0.05) between administrative empowerment and remote supervision of the educational supervisors of the Saudi Ministry of Education. The research recommends that

... Show More
View Publication Preview PDF
Publication Date
Tue Nov 30 2021
Journal Name
Iraqi Journal Of Science
Enhancing the Accuracy of Health Care Internet of Medical Things in Real Time using CNNets
...Show More Authors

     This paper presents an efficient system using a deep learning algorithm that recognizes daily activities and investigates the worst falling cases to save elders during daily life. This system is a physical activity recognition system based on the Internet of Medical Things (IoMT) and uses convolutional neural networks (CNNets) that learn features and classifiers automatically. The test data include the elderly who live alone. The performance of CNNets is compared against that of state-of-the-art methods, such as activity windowing, fixed sample windowing, time-weighted windowing, mutual information windowing, dynamic windowing, fixed time windowing, sequence prediction algorithm, and conditional random fields. Th

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Sun Jan 01 2023
Journal Name
E3s Web Of Conferences
Comparing the Design Alternatives Using Building Information Model (BIM) and Constructability in Iraqi Construction Projects
...Show More Authors

The Iraqi construction industry suffers from many issues that lead to many design errors, clashes, delays and cost overruns. Therefore, applying constructability will prevent these issues from happening, as it has proven its positive effect in different projects around the world. The goal of this paper is to use building information modelling (BIM) to assess the constructability, provide the opportunities for the project stakeholders to choose the best constructable design alternative and find the affection of applying constructability on project cost. The practical side of this research consists of two parts: in the first part, 37 factors are collected from the literature review as factors that effect on constructability. After tha

... Show More
View Publication
Scopus Crossref