This research reports an error analysis of close-range measurements from a Stonex X300 laser scanner in order to address range uncertainty behavior based on indoor experiments under fixed environmental conditions. The analysis includes procedures for estimating the precision and accuracy of the observational errors estimated from the Stonex X300 observations and conducted at intervals of 5 m within a range of 5 to 30 m. The laser 3D point cloud data of the individual scans is analyzed following a roughness analysis prior to the implementation of a Levenberg–Marquardt iterative closest points (LM-ICP) registration. This leads to identifying the level of roughness that was encountered due to the range-finder’s limitations in close-ranging as well as measurements that were obtained from extreme incident angle signals. The measurements were processed using a statistical outlier removal (SOR) filter to reduce the noise impact toward a smoother data set. The geometric differences and the RMSE values in the 3D coordinate directions were computed and analyzed, which showed the potential of the Stonex X300 measurements in close-ranging following a careful statistical analysis. It was found that the error differences in the vertical direction had a consistent behavior when the range increased, whereas the errors in the horizontal direction varied. However, it is more common to produce errors in the vertical direction as compared to the horizontal one.
The analytical study of optical bistability is concerned in a fully
optimized laser Fabry-Perot system. The related phenomena of
switching dynamics and optimization procedure are also included.
From the steady state of optical bistability equation can plot the
incident intensity versus the round trip phase shift (φ) for different
values of dark mistuning
12
,
6
,
3
,
1.5
0 , o
or finesse (F= 1, 5, 20,
100). In order to obtain different optical bistable loops. The inputoutput
characteristic for a nonlinear Fabry-Perot etalon of a different
values of finesse (F) and using different initial detuning (φ0) are used
in this rese
A new scheme of plasma-mediated thermal coupling has been implemented which yields the temporal distributions of the thermal flux which reaches the metal surface, from which the spatial and temporal temperature profiles can be calculated. The model has shown that the temperature of evaporating surface is determined by the balance between the absorbed power and the rate of energy loss due to evaporation. When the laser power intensity range is 107 to108 W/cm2 the temperature of vapor could increase beyond the critical temperature of plasma ignition, i.e. plasma will be ignited above the metal surface. The plasma density has been analyzed at different values of vapor temperature and pressure using Boltzmann’s code for calculation of elec
... Show MoreAbstract: When it comes to applications in welding, cutting, and surface engineering, the utilization of high-power fiber-delivered beams from solid-state lasers offers several benefits. This paper addresses the issue of cleaning the surface of the samples with different spot sizes (50, 100 and 200) (industrial ytterbium fiber laser) to prepared it to be welded. Angular laser cleaning with incident angles (5, 10, 15, 20, 25, 30) ° with different powers (3, 5, 7, 10) W and hatch distance 0.001 was use for implemented.
Pulsed laser ablation in liquid (PLAL) has become an increasingly important technique for metals production and metal oxides nanoparticles (NPs) and others. This technique has its many advantages compared with other conventional techniques (physical and chemical). This work was devoted for production of zirconia (ZrO2) nanoparticles via PLAL technique from a solid zirconium target immersed in a wet environment in order to study the effect of this environment on the optical properties and structure of ZrO2 nanoparticles. The solutions which used for this purpose is distilled water (D.W). The produces NPs were characterized by mean of many tests such as UV-visible (UV-Vis.), transmission electron microscope (TEM) and Z-Potential. The UV-Vis.
... Show MoreNanoparticles generation by laser ablation of a solid target in a liquid environment is an easy method. Cadmium Telluride (CdTe) colloidal nanoparticles have been synthesized by laser ablation Nd:YAG with wavelengths of 1064nm and double frequency at 532 nm, number of pulses 50 pulses, with pulse energy= 620mJ, 700mJ of a solid target CdTe is immersed in double distilled deionized water (DDIW) and in methanol liquid. Influences of the laser energy and different solutions on the formation and optical characterization of the CdTe nanoparticles have been studied using atomic force microscope (AFM) and the UV-Vis absorption. As a results, it leads to the absorbance in UV-Vis spectra of samples prepared in water at laser wavelength of 532nm i
... Show MoreThe applications of hot plasma are many and numerous applications require high values of the temperature of the electrons within the plasma region. Improving electron temperature values is one of the important processes for using this specification in plasma for being adopted in several modern applications such as nuclear fusion, plating operations and in industrial applications. In this work, theoretical computations were performed to enhance electron temperature under dense homogeneous plasma. The effect of power and duration time of pulsed Nd:YAG laser was studied on the heating of plasmas by inverse bremsstrahlung for several values for the electron density ratio. There results for these ca
... Show MoreThis study investigates the surgical and thermal effects on oral soft tissues produced by CO2 laser emitting at 10.6 micrometers with three different fluences 490.79, 1226.99 and 1840.4 J/cm2. These effects are specifically; incision depth, incision width and the tissue damage width and depth. The results showed that increasing the fluence and /or the number of beam passes increase the average depths of ablation. Moreover, increasing the fluence and the number of beam passes increase the adjacent tissue damage in width and depth. Surgeons using CO2 laser should avoid multiple pulses of the laser beam over the same area, to avoid unintentional tissue damage.