Introduction: In recent decades, the endovascular treatment of cerebral arteriovenous malformations (AVMs) has advanced. However, it still carries risks of unanticipated complications. Coil migration is a reported complication of aneurysmal coiling procedures. Herein, we report a case of early intraprocedural coil migration during pressure cooker technique embolization of right thalamic AVM, discussing the management and potential explanations. The literature showed no report of coil migration after the pressure cooker technique in the form of coil-augmented Onyx injection technique (CAIT). Case description: An otherwise healthy 26-year-old female suddenly developed a severe headache with no loss of consciousness. Computed tomography (CT) scan of the head illustrated intraventricular haemorrhage. Magnetic resonance imaging (MRI) showed the bag of worms' sign in the right thalamic area. The size and location of the AVM prompted the decision for multistage endovascular embolization using onyx. In the anterior circulation, the right A5 arterial feeder has a high flow which indicates the pressure cooker technique embolization in the form of CAIT. In the procedure, early detachment and migration of the coil occurred in the medial prefrontal branch through the anterior cerebral artery. No intervention to retrieve the coil was carried out because the detachment piece is small and lodged distally. Onyx was injected directly without the coil because of the risk of radiation to the patient. Otherwise, the intraprocedural and postprocedural courses went uneventful. Conclusion: This is the first report of coil migration during the pressure cooker technique with CAIT for the right thalamic AVM.
In the years recently city planning projects have been confirmed sustainable high concentration on planning streets and pedestrian paths being the most prominent component of the urban structure in the city and these me and diverse departments link the city’s sectors and serve as a space for economic, service, and social activities. On the other hand, pedestrian traffic is an essential component of the various means of transportation within the city. Suffer cities in the Middle East and Arab cities in particular are neglecting pedestrian paths in the vital urban environment. Vehicle control mechanisms on roads, and changing the uses of pedestrian paths as result of encroaching on the sidewalks designated for pedestrians. Which leads to a
... Show MoreAmorphization of drug has been considered as an attractive approach in improving drug solubility and bioavailability. Unlike their crystalline counterparts, amorphous materials lack the long-range order of molecular packing and present the highest energy state of a solid material. Co-amorphous systems (CAM) are an innovative formulation technique by where the amorphous drugs are stabilized via powerful intermolecular interactions by means of a low molecular co-former.
This review highlights the different approaches in the preparation of co-amorphous drug delivery system, the proper selection of the co-formers. In addition, the recent advances in characterization, Industrial scale and formulation will be discussed.
Adverse drug reactions (ADR) are important information for verifying the view of the patient on a particular drug. Regular user comments and reviews have been considered during the data collection process to extract ADR mentions, when the user reported a side effect after taking a specific medication. In the literature, most researchers focused on machine learning techniques to detect ADR. These methods train the classification model using annotated medical review data. Yet, there are still many challenging issues that face ADR extraction, especially the accuracy of detection. The main aim of this study is to propose LSA with ANN classifiers for ADR detection. The findings show the effectiveness of utilizing LSA with ANN in extracting AD
... Show MoreLuminescent sensor membranes and sensor microplates are presented for continuous or high-throughput wide-range measurement of pH based on a europium probe.
The aim of this paper is to approximate multidimensional functions by using the type of Feedforward neural networks (FFNNs) which is called Greedy radial basis function neural networks (GRBFNNs). Also, we introduce a modification to the greedy algorithm which is used to train the greedy radial basis function neural networks. An error bound are introduced in Sobolev space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result is published in [16]).
This paper predicts the resilient modulus (Mr) for warm mix asphalt (WMA) mixtures prepared using aspha-min. Various predictor variables were analyzed, including asphalt cement types, asphalt contents, nominal maximum aggregate sizes (NMAS), filler content, test temperatures, and loading times. Univariate and multivariate analyses were conducted to examine the behavior of each predictor variable individually and collectively. Through univariate analysis, it was observed that Mr exhibited an inverse trend with asphalt cement grade, NMAS, test temperature, and load duration. Although Mr increased slightly with higher filler and asphalt content, the magnitude of this increase was minimal. Multivariate analysis revealed that the rate of change
... Show MoreIn high-dimensional semiparametric regression, balancing accuracy and interpretability often requires combining dimension reduction with variable selection. This study intro- duces two novel methods for dimension reduction in additive partial linear models: (i) minimum average variance estimation (MAVE) combined with the adaptive least abso- lute shrinkage and selection operator (MAVE-ALASSO) and (ii) MAVE with smoothly clipped absolute deviation (MAVE-SCAD). These methods leverage the flexibility of MAVE for sufficient dimension reduction while incorporating adaptive penalties to en- sure sparse and interpretable models. The performance of both methods is evaluated through simulations using the mean squared error and variable selection cri
... Show MoreThe evolution in the field of Artificial Intelligent (AI) with its training algorithms make AI very important in different aspect of the life. The prediction problem of behavior of dynamical control system is one of the most important issue that the AI can be employed to solve it. In this paper, a Convolutional Multi-Spike Neural Network (CMSNN) is proposed as smart system to predict the response of nonlinear dynamical systems. The proposed structure mixed the advantages of Convolutional Neural Network (CNN) with Multi -Spike Neural Network (MSNN) to generate the smart structure. The CMSNN has the capability of training weights based on a proposed training algorithm. The simulation results demonstrated that the proposed
... Show More