The complexity of multimedia contents is significantly increasing in the current world. This leads to an exigent demand for developing highly effective systems to satisfy human needs. Until today, handwritten signature considered an important means that is used in banks and businesses to evidence identity, so there are many works tried to develop a method for recognition purpose. This paper introduced an efficient technique for offline signature recognition depending on extracting the local feature by utilizing the haar wavelet subbands and energy. Three different sets of features are utilized by partitioning the signature image into non overlapping blocks where different block sizes are used. CEDAR signature database is used as a dataset for testing purpose. The results achieved by this technique indicate a high performance in signature recognition.
Embedding an identifying data into digital media such as video, audio or image is known as digital watermarking. In this paper, a non-blind watermarking algorithm based on Berkeley Wavelet Transform is proposed. Firstly, the embedded image is scrambled by using Arnold transform for higher security, and then the embedding process is applied in transform domain of the host image. The experimental results show that this algorithm is invisible and has good robustness for some common image processing operations.
This paper introduces method of image enhancement using the combination of both wavelet and Multiwavelet transformation. New technique is proposed for image enhancement using one smoothing filter.
A critically- Sampled Scheme of preprocessing method is used for computing the Multiwavelet.It is the 2nd norm approximation used to speed the procedures needed for such computation.
An improvement was achieved with the proposed method in comparison with the conventional method.
The performance of this technique has been done by computer using Visual Baisec.6 package.
This article aims to estimate the partially linear model by using two methods, which are the Wavelet and Kernel Smoothers. Simulation experiments are used to study the small sample behavior depending on different functions, sample sizes, and variances. Results explained that the wavelet smoother is the best depending on the mean average squares error criterion for all cases that used.
In this paper, we investigate the automatic recognition of emotion in text. We perform experiments with a new method of classification based on the PPM character-based text compression scheme. These experiments involve both coarse-grained classification (whether a text is emotional or not) and also fine-grained classification such as recognising Ekman’s six basic emotions (Anger, Disgust, Fear, Happiness, Sadness, Surprise). Experimental results with three datasets show that the new method significantly outperforms the traditional word-based text classification methods. The results show that the PPM compression based classification method is able to distinguish between emotional and nonemotional text with high accuracy, between texts invo
... Show MoreThis article aim to estimate the Return Stock Rate of the private banking sector, with two banks, by adopting a Partial Linear Model based on the Arbitrage Pricing Model (APT) theory, using Wavelet and Kernel Smoothers. The results have proved that the wavelet method is the best. Also, the results of the market portfolio impact and inflation rate have proved an adversely effectiveness on the rate of return, and direct impact of the money supply.
Although the Wiener filtering is the optimal tradeoff of inverse filtering and noise smoothing, in the case when the blurring filter is singular, the Wiener filtering actually amplify the noise. This suggests that a denoising step is needed to remove the amplified noise .Wavelet-based denoising scheme provides a natural technique for this purpose .
In this paper a new image restoration scheme is proposed, the scheme contains two separate steps : Fourier-domain inverse filtering and wavelet-domain image denoising. The first stage is Wiener filtering of the input image , the filtered image is inputted to adaptive threshold wavelet
... Show MoreThe denoising of a natural image corrupted by Gaussian noise is a problem in signal or image processing. Much work has been done in the field of wavelet thresholding but most of it was focused on statistical modeling of wavelet coefficients and the optimal choice of thresholds. This paper describes a new method for the suppression of noise in image by fusing the stationary wavelet denoising technique with adaptive wiener filter. The wiener filter is applied to the reconstructed image for the approximation coefficients only, while the thresholding technique is applied to the details coefficients of the transform, then get the final denoised image is obtained by combining the two results. The proposed method was applied by usin
... Show MoreA new de-blurring technique was proposed in order to reduced or remove the blur in the images. The proposed filter was designed from the Lagrange interpolation calculation with adjusted by fuzzy rules and supported by wavelet decomposing technique. The proposed Wavelet Lagrange Fuzzy filter gives good results for fully and partially blurring region in images.