The complexity of multimedia contents is significantly increasing in the current world. This leads to an exigent demand for developing highly effective systems to satisfy human needs. Until today, handwritten signature considered an important means that is used in banks and businesses to evidence identity, so there are many works tried to develop a method for recognition purpose. This paper introduced an efficient technique for offline signature recognition depending on extracting the local feature by utilizing the haar wavelet subbands and energy. Three different sets of features are utilized by partitioning the signature image into non overlapping blocks where different block sizes are used. CEDAR signature database is used as a dataset for testing purpose. The results achieved by this technique indicate a high performance in signature recognition.
In this article, the boundary value problem of convection propagation through the permeable fin in a natural convection environment is solved by the Haar wavelet collocation method (HWCM). We also compare the solutions with the application of a semi-analytical method , namely the Temimi and Ansari (TAM), that is characterized by accuracy and efficiency.The proposed method is also characterized by simplicity and efficiency. The possibility of applying the proposed method to many types of linear or nonlinear ordinary and partial differential equations.
Texture recognition is used in various pattern recognition applications and texture classification that possess a characteristic appearance. This research paper aims to provide an improved scheme to provide enhanced classification decisions and to decrease processing time significantly. This research studied the discriminating characteristics of textures by extracting them from various texture images using discrete Haar transform (DHT) and discrete Fourier transform DFT. Two sets of features are proposed; the first set was extracted using the traditional DFT, while the second used DHT. The features from the Fourier domain are calculated using the radial distribution of spectra, while for those extracted from Haar Wavelet the statistical
... Show MoreOffline handwritten signature is a type of behavioral biometric-based on an image. Its problem is the accuracy of the verification because once an individual signs, he/she seldom signs the same signature. This is referred to as intra-user variability. This research aims to improve the recognition accuracy of the offline signature. The proposed method is presented by using both signature length normalization and histogram orientation gradient (HOG) for the reason of accuracy improving. In terms of verification, a deep-learning technique using a convolution neural network (CNN) is exploited for building the reference model for a future prediction. Experiments are conducted by utilizing 4,000 genuine as well as 2,000 skilled forged signatu
... Show MoreThe investigation of signature validation is crucial to the field of personal authenticity. The biometrics-based system has been developed to support some information security features.Aperson’s signature, an essential biometric trait of a human being, can be used to verify their identification. In this study, a mechanism for automatically verifying signatures has been suggested. The offline properties of handwritten signatures are highlighted in this study which aims to verify the authenticity of handwritten signatures whether they are real or forged using computer-based machine learning techniques. The main goal of developing such systems is to verify people through the validity of their signatures. In this research, images of a group o
... Show MoreIn this research, Haar wavelets method has been utilized to approximate a numerical solution for Linear state space systems. The solution technique is used Haar wavelet functions and Haar wavelet operational matrix with the operation to transform the state space system into a system of linear algebraic equations which can be resolved by MATLAB over an interval from 0 to . The exactness of the state variables can be enhanced by increasing the Haar wavelet resolution. The method has been applied for different examples and the simulation results have been illustrated in graphics and compared with the exact solution.
In this study, a fast block matching search algorithm based on blocks' descriptors and multilevel blocks filtering is introduced. The used descriptors are the mean and a set of centralized low order moments. Hierarchal filtering and MAE similarity measure were adopted to nominate the best similar blocks lay within the pool of neighbor blocks. As next step to blocks nomination the similarity of the mean and moments is used to classify the nominated blocks and put them in one of three sub-pools, each one represents certain nomination priority level (i.e., most, less & least level). The main reason of the introducing nomination and classification steps is a significant reduction in the number of matching instances of the pixels belong to the c
... Show MoreThis paper presents a study of wavelet self-organizing maps (WSOM) for face recognition. The WSOM is a feed forward network that estimates optimized wavelet based for the discrete wavelet transform (DWT) on the basis of the distribution of the input data, where wavelet basis transforms are used as activation function.
Improving the performance of visual computing systems is achieved by removing unwanted reflections from a picture captured in front of a glass. Reflection and transmission layers are superimposed in a linear form at the reflected photographs. Decomposing an image into these layers is often a difficult task. Plentiful classical separation methods are available in the literature which either works on a single image or requires multiple images. The major step in reflection removal is the detection of reflection and background edges. Separation of the background and reflection layers is depended on edge categorization results. In this paper a wavelet transform is used as a prior estimation of background edges to sepa
... Show MoreWe study clusters in warm dark matter (WDM) models of a thermally produced dark matter particle 0.5 keV in mass. We show that, despite clusters in WDM cosmologies having similar density profiles as their cold dark matter (CDM) counterparts, the internal properties, such as the amount of substructure, show marked differences. This result is surprising as clusters are at mass scales that are a thousand times greater than that at which structure formation is suppressed. WDM clusters gain significantly more mass via smooth accretion and contain fewer substructures than their CDM brethren. The higher smooth mass accretion results in subhaloes which are physically more extended and less dense. These fine-scale differences can be probed by strong
... Show More