Corrosion behavior of aluminum alloy 7025 was investigated in hydrochloric acid (pH=1) containing 0.6 mol.dm-3 NaCl in the existence and absence of diverse concentrations of sulphamethoxazole as environmentally friendly corrosion inhibitor over the temperature range (298-313)K. Electrochemical polarization method using potentiostatic technique was employed. The inhibition efficiency has been raised with increased sulphamethoxazole concentration but lessened at temperature increases. The highest efficiency value was 96.5 at 298 K and 2 x10-4 mol.dm-3 concentration of sulphamethoxazole. The sulphamethoxazole adsorption was agreed with Langmuir adsorption isotherm. Some thermodynamic parameter (△Gads) and activation energy (Ea) were determined to demonstrate the process of corrosion inhibiting. The kinetic parameters were calculated using Arrhenius equation. An appropriate mechanism has been suggested for aluminum corrosion in acidic medium. The results show that sulphamethoxazole is a mixed type inhibitor. The surface morphology of uninhibited and inhibited samples was investigated using an optical microscope
<p>Daftardar Gejji and Hossein Jafari have proposed a new iterative method for solving many of the linear and nonlinear equations namely (DJM). This method proved already the effectiveness in solved many of the ordinary differential equations, partial differential equations and integral equations. The main aim from this paper is to propose the Daftardar-Jafari method (DJM) to solve the Duffing equations and to find the exact solution and numerical solutions. The proposed (DJM) is very effective and reliable, and the solution is obtained in the series form with easily computed components. The software used for the calculations in this study was MATHEMATICA<sup>®</sup> 9.0.</p>
In this paper, author’s study sub diffusion bio heat transfer model and developed explicit finite difference scheme for time fractional sub diffusion bio heat transfer equation by using caputo fabrizio fractional derivative. Also discussed conditional stability and convergence of developed scheme. Furthermore numerical solution of time fractional sub diffusion bio heat transfer equation is obtained and it is represented graphically by Python.
In this paper, Min-Max composition fuzzy relation equation are studied. This study is a generalization of the works of Ohsato and Sekigushi. The conditions for the existence of solutions are studied, then the resolution of equations is discussed.
This research aims to solve the nonlinear model formulated in a system of differential equations with an initial value problem (IVP) represented in COVID-19 mathematical epidemiology model as an application using new approach: Approximate Shrunken are proposed to solve such model under investigation, which combines classic numerical method and numerical simulation techniques in an effective statistical form which is shrunken estimation formula. Two numerical simulation methods are used firstly to solve this model: Mean Monte Carlo Runge-Kutta and Mean Latin Hypercube Runge-Kutta Methods. Then two approximate simulation methods are proposed to solve the current study. The results of the proposed approximate shrunken methods and the numerical
... Show MoreThe Multiple Signal Classification (MUSIC) algorithm is the most popular algorithm to estimate the Angle of Arrival (AOA) of the received signals. The analysis of this algorithm (MUSIC) with typical array antenna element ( ) shows that there are two false direction indication in the plan
aligned with the axis of the array. In this paper a suggested modification on array system is proposed by using two perpendiculars crossed dipole array antenna in spite of one array antenna. The suggested modification does not affect the AOA estimation algorithm. The simulation and results shows that the proposed solution overcomes the MUSIC problem without any effect on the performance of the system.
AG Al-Ghazzi, 2009
This paper devoted to the analysis of regular singular boundary value problems for ordinary differential equations with a singularity of the different kind , we propose semi - analytic technique using two point osculatory interpolation to construct polynomial solution, and discussion behavior of the solution in the neighborhood of the regular singular points and its numerical approximation. Many examples are presented to demonstrate the applicability and efficiency of the methods. Finally , we discuss behavior of the solution in the neighborhood of the singularity point which appears to perform satisfactorily for singular problems.
KE Sharquie, AA Khorsheed, AA Al-Nuaimy, Saudi Medical Journal, 2007 - Cited by 91