In this study, a packed bed was used to remove pathogenic bacteria from synthetic contaminated water. Two types of packing material substrates, sand and zeolite, were used. These substrates were coated with silver nanoparticles (AgNPs), which were prepared by decomposition of Ag ions from AgNO3 solution. The prepared coated packings were characterized using scanning electron microscopy, energy-dispersive X-ray spectroscopy and transmission electron microscopy. The packed column consisted of a PVC cylinder of 2 cm diameter and 20 cm in length. The column was packed with silver nanoparticlecoated substrates (sand or zeolite) at a depth of 10 cm. Four types of bacteria were studied: Escherichia coli, Shigella dysenteriae, Pseudomonas aeruginosa and Vibrio cholera. The parameters studied were feed inlet flow rate (1.5, 2, 3 and 4 L/h) and AgNO3 concentration (0.02, 0.04, 0.07 and 0.1 mM), which were used to coat the packing substrates. The best results for removal efficiency of bacteria were obtained at the feed flow rate of 1.5 L/h with AgNO3 concentration 0.1 mM. Likewise, the percent of bacterial removal from contaminated water was found to be 99% for V. cholera, 93.7% for E. coli, 85% for S. dysenteriae and 77.5% for P. aeruginosa
Leuconostoc bacteria was isolated from local pickled cabbage (Brassica oleracea capitata) and identified as Leuconostoc mesenteroides by morphology,biochemical and physiological. The local isolated L. mesenteroides bacteria under the optimal conditions of dextran production showed that, the highly production of dextran was 7.7g achieved by using a modified natural media comprised of 100ml whey, 10g refined sugar, 0.5g heated yeast extract, 0.01g CaCl2, 0.001g MgSO4, 0.001g MnCl2 and 0.001g NaCl at pH 6 and 25̊C for 24 hr of fermentation and by using 1ᵡ106 cell/ml as initial inoculums volume. Some applications in food technology (Ice cream, Loaf, Ketchup and Beef preservation) have been performed with processed dextran. The result
Four hundred and fifty urine samples were collected from patients suffering from urinary tract infection from the General Azadi hospital in Kurkuk province ,during the period of october 2007 till march 2008 . Results of bacteriological culture revealed that (168) out of (450) studied samples (37.3%) gave positive culture using blood agar and macConkey agar ; different species of bacterial isolates were detected using morphological and biochemical tests ,from these isolates the highest percentage of the isolates were from Escherichia coli when it was (100) isolates out of (190) isolate (52.63%) . one hundred isolates were distributed between (77) from females and (23) from
... Show MoreThe Electro-Fenton oxidation process is one of the essential advanced electrochemical oxidation processes used to treat Phenol and its derivatives in wastewater. The Electro-Fenton oxidation process was carried out at an ambient temperature at different current density (2, 4, 6, 8 mA/cm2) for up to 6 h. Sodium Sulfate at a concentration of 0.05M was used as a supporting electrolyte, and 0.4 mM of Ferrous ion concentration (Fe2+) was used as a catalyst. The electrolyte cell consists of graphite modified by an electrodepositing layer of PbO2 on its surface as anode and carbon fiber modified with Graphene as a cathode. The results indicated that Phenol concentration decreases with an increase in current dens
... Show MoreThe aim of this study is to synthesize an easy, non-toxic and eco-friendly method. Silver nanoparticles which were synthesized by leaf extract of mint were characterized by UV-Visible Spectroscopy which appears UVVisible spectrum of demonstrated a peak 448 nm corresponding to surface Plasmon resonance of silver nanoparticles, Fourier Transform Infrared Spectroscopy (FTIR); functional groups involved in the silver nanoparticles synthesis were identified, the presence of silver nanoparticles was confirmed by X-ray diffraction (XRD) and Atomic Force Microscope (AFM) analysis clearly illustrated that the shape of silver nanoparticles was spherical and the size of the silver nanoparticles has been measured as 55- 85 nm. Evaluation of its antimic
... Show MoreIn the current century, nanotechnology has gained great interest due to its ability to modify the size of metals to the nanoscale, which dramatically changes the physical, chemical, and biological characteristics of metals relative to their bulk counterparts. The approaches used to create nanoparticles (NPs) are physical, و chemical and وbiological. The shortcomings in physical and chemical synthesis approaches, such as the generation of toxic by-products, and energy consume as they require high temperature, pressure, power and lethal chemicals, contributed to an increased interest in biological synthesis by plants. Scientists have created a new filed called as "green nanotechnology" by fusing the idea of sustainability with nanotechno
... Show MoreThe degradation and mineralization of 4-chlorophenol (4-CP) by advanced oxidation processes (AOPs) was investigated in this work, using both of UV/H2O2 and photo-Fenton UV/H2O2/Fe+3 systems.The reaction was influenced by the input concentration of H2O2, the amount of the iron catalyst, the type of iron salt, the pH and the concentration of 4-CP. A colored solution of benzoquinon can be observed through the first 5 minutes of irradiation time for UV/H2O2 system when low concentration (0.01mol/L) of H2O2 was used. The colored solution of benzoquinon could also be observed through the first 5 minutes for the UV/H2O2/Fe+3 system at high
concentration (100ppm) of 4-CP. The results have shown that adding Fe+3 to the UV/H2O2 system enhanced
The adsorption behavior of methyl orange from aqueous solution on Iraqi bentonite was investigated. The effects of various parameters such as initial concentration of methyl orange, amount of adsorbent, ionic strength and temperature on the adsorption capacity has been studied. The percentage removal of methyl orange increased with the decrease of initial concentration of methyl orange and it increased with the increase of dose of adsorbent. The adsorbed amount of methyl orange decrease with increasing ionic strength and an increase in temperature. The equilibrium adsorption isotherms have been analysed by the linear, Langmuir and Temkin models. The Langmuir isotherms have the highest correlation coefficients. Thermodynamic paramet
... Show More