Today’s modern medical imaging research faces the challenge of detecting brain tumor through Magnetic Resonance Images (MRI). Normally, to produce images of soft tissue of human body, MRI images are used by experts. It is used for analysis of human organs to replace surgery. For brain tumor detection, image segmentation is required. For this purpose, the brain is partitioned into two distinct regions. This is considered to be one of the most important but difficult part of the process of detecting brain tumor. Hence, it is highly necessary that segmentation of the MRI images must be done accurately before asking the computer to do the exact diagnosis. Earlier, a variety of algorithms were developed for segmentation of MRI images by using different tools and techniques. However, this paper presents a comprehensive review of the methods and techniques used to detect brain tumor through MRI image segmentation. Lastly, the paper concludes with a concise discussion and provides a direction toward the upcoming trend of more advanced research studies on brain image segmentation and Tumor detection.
Background: Obesity typically results from a variety of causes and factors which contribute, genetics included, and style of living choices, and described as excessive body fat accumulation of body fat lead to excessive body, is a chronic disorder that combines pathogenic environmental and genetic factors. So, the current study objective was to investigate the of the FTO gene rs9939609 polymorphism and the obesity risk. Explaining the relationship between fat mass and obesity-associated gene (FTO) rs9939609 polymorphism and obesity in adults. Methods: Identify research exploring the association between the obesity risk and the variation polymorphisms of FTO gene rs9939609. We combined the modified odds ratios (OR) as total groups and subgro
... Show MoreThe goal of this research to identify the effect of the probing questions in the collection of material literature with students of the Kurdish language department, to achieve the aim of the research, the researcher has chosen a sample from the students of third stage of the Kurdish language Department, Faculty of Education / Ibn Rushd as a field for the application of experiment.The number of sample reached (71) students divided into two groups represented two divisions of the experimental groups under study to the style of questions sounding by (35) students, and represented the other division of the control group, which studied in the way normal and by (36) students, as rewarded r
... Show MoreThe diagnosis of acute appendicitis (AA) sometimes is illusive and the accompanying clinical and laboratory manifestations cannot be used for definitive diagnosis. Objective: This study aimed to evaluate the diagnostic value of neutrophil/lymphocyte ratio (NLR) in detection of AA. Materials and Methods: This is a cross-sectional study that included a total of 80 adult patients with AA and 62 age- and gender-matched patients with abdominal pain due to causes other than AA. Three milliliter of peripheral blood were collected from each participant. The NLR was calculated by dividing the absolute neutrophil count by the absolute lymphocyte count. Receiver operating characteristic curve was used to assess the diagnostic value of NLR in detection
... Show MoreBackground: Chronic periodontitis defined as “an infectious inflammatory disease within supporting tissues of the teeth, progressive attachment loss and bone loss". Aggressive periodontitis is rare which in most cases manifest themselves clinically during youth. It characterized by rapid rate of disease progression .Pro-inflammatory chemokines organized inflammatory responses. Granulocyte chemotactic protein 2 is involved in neutrophil gathering and movement. The purpose of the study is to detect serum of Granulocyte Chemotactic Protein 2 and correlate to periodontal condition in patients with chronic periodontitis, Aggressive periodontitis and Healthy Control subjects and measurement the count of neutrophils for the studied groups. S
... Show MoreThe major of DDoS attacks use TCP protocol and the TCP SYN flooding attack is the most common one among them. The SYN Cookie mechanism is used to defend against the TCP SYN flooding attack. It is an effective defense, but it has a disadvantage of high calculations and it doesn’t differentiate spoofed packets from legitimate packets. Therefore, filtering the spoofed packet can effectively enhance the SYN Cookie activity. Hop Count Filtering (HCF) is another mechanism used at the server side to filter spoofed packets. This mechanism has a drawback of being not a perfect and final solution in defending against the TCP SYN flooding attack. An enhanced mechanism of Integrating and combining the SYN Cookie with Hop Count Filtering (HCF) mech
... Show MoreTotal of 46 isolates of Klebsiella pneumoniae were collected from patients attending (Al-Yarmook Hospital and Education Labs / medical city), and isolates were re-identified, depending on morphology and biochemical tests . Disk diffusion method was employed to determine antibiotic susceptibility of forty six isolates by using eleven antibiotics .The results revealed the sensitivity of six isolates (9.3%) to Imipenem and Meropenem . On the other hand the isolates were showed 23.9% resistant against Ciprofloxacin, while some isolates shown higher resistant against several antimicrobial agents such as 65.2%, 69.0% for Amikacin and Cefepime consequently , 71.1%, 71.7 % for Amoxicillin -Clauvulanic acid and Gentamicin and 82.6% against Pipera
... Show MoreMany approaches of different complexity already exist to edge detection in
color images. Nevertheless, the question remains of how different are the results
when employing computational costly techniques instead of simple ones. This
paper presents a comparative study on two approaches to color edge detection to
reduce noise in image. The approaches are based on the Sobel operator and the
Laplace operator. Furthermore, an efficient algorithm for implementing the two
operators is presented. The operators have been applied to real images. The results
are presented in this paper. It is shown that the quality of the results increases by
using second derivative operator (Laplace operator). And noise reduced in a good
Data mining has the most important role in healthcare for discovering hidden relationships in big datasets, especially in breast cancer diagnostics, which is the most popular cause of death in the world. In this paper two algorithms are applied that are decision tree and K-Nearest Neighbour for diagnosing Breast Cancer Grad in order to reduce its risk on patients. In decision tree with feature selection, the Gini index gives an accuracy of %87.83, while with entropy, the feature selection gives an accuracy of %86.77. In both cases, Age appeared as the most effective parameter, particularly when Age<49.5. Whereas Ki67 appeared as a second effective parameter. Furthermore, K- Nearest Neighbor is based on the minimum err
... Show More