Today’s modern medical imaging research faces the challenge of detecting brain tumor through Magnetic Resonance Images (MRI). Normally, to produce images of soft tissue of human body, MRI images are used by experts. It is used for analysis of human organs to replace surgery. For brain tumor detection, image segmentation is required. For this purpose, the brain is partitioned into two distinct regions. This is considered to be one of the most important but difficult part of the process of detecting brain tumor. Hence, it is highly necessary that segmentation of the MRI images must be done accurately before asking the computer to do the exact diagnosis. Earlier, a variety of algorithms were developed for segmentation of MRI images by using different tools and techniques. However, this paper presents a comprehensive review of the methods and techniques used to detect brain tumor through MRI image segmentation. Lastly, the paper concludes with a concise discussion and provides a direction toward the upcoming trend of more advanced research studies on brain image segmentation and Tumor detection.
The main objective of the central bank is to achieve price stability and target in fractionates. Therefore, the bank sought to use modern tools and policies in order to reduce the negative effects of the accumulation of foreign reserves represented by monetary sterilization, similar to developed and developing countries alike, but with different available tools that are possible and imposed by the local financial and monetary environments, such as the window for buying and selling foreign currency, open market operations and deposit facilities. And lending existing. Because any in crease in the monetary base resulting from the accumulation of foreign reserves will affect price stability directly due to the consumer nature of the
... Show MoreIn this paper, the researcher suggested using the Genetic algorithm method to estimate the parameters of the Wiener degradation process, where it is based on the Wiener process in order to estimate the reliability of high-efficiency products, due to the difficulty of estimating the reliability of them using traditional techniques that depend only on the failure times of products. Monte Carlo simulation has been applied for the purpose of proving the efficiency of the proposed method in estimating parameters; it was compared with the method of the maximum likelihood estimation. The results were that the Genetic algorithm method is the best based on the AMSE comparison criterion, then the reliab
... Show MoreThe platforms of social networking sites, with their distinctive communication and technological features, create a social movement that led to the establishment of a new pattern of communication in a modern context. This allows the users on the internet to carry out many social interactions based on the interests and commonalities among them. Algerian women have a share of this digital presence by representing their views and discussing their issues on several sites like Facebook, for example.
In this research, we have analyzed the pages of Algerian women on Facebook site to find out the most important issues addressed by Algerian women so that we can organize their concerns in the digital channels and discover their different orie
The COVID-19 pandemic has necessitated new methods for controlling the spread of the virus, and machine learning (ML) holds promise in this regard. Our study aims to explore the latest ML algorithms utilized for COVID-19 prediction, with a focus on their potential to optimize decision-making and resource allocation during peak periods of the pandemic. Our review stands out from others as it concentrates primarily on ML methods for disease prediction.To conduct this scoping review, we performed a Google Scholar literature search using "COVID-19," "prediction," and "machine learning" as keywords, with a custom range from 2020 to 2022. Of the 99 articles that were screened for eligibility, we selected 20 for the final review.Our system
... Show MoreThe emergence of mixed matrix membranes (MMMs) or nanocomposite membranes embedded with inorganic nanoparticles (NPs) has opened up a possibility for developing different polymeric membranes with improved physicochemical properties, mechanical properties and performance for resolving environmental and energy-effective water purification. This paper presents an overview of the effects of different hydrophilic nanomaterials, including mineral nanomaterials (e.g., silicon dioxide (SiO2) and zeolite), metals oxide (e.g., copper oxide (CuO), zirconium dioxide (ZrO2), zinc oxide (ZnO), antimony tin oxide (ATO), iron (III) oxide (Fe2O3) and tungsten oxide (WOX)), two-dimensional transition (e.g., MXene), metal–organic framework (MOFs), c
... Show MoreBackground: Parvovirus B19 is a human pathogenic virus associated with a wide range of clinical conditions. During pregnancy congenital infection with parvovirus B19 can be associated with poor outcome, including miscarriage, fetal anemia and non-immune hydrops.
Objective: The study aimed to determine the prevalenceof Parvovirus B19 DNA in pregnant women attending the Military hospital in Khartoum, demonstrating the association between the virus and poor pregnancy outcomes.
Subjects and methods: This study was a cross sectional study, testing pregnant Sudanese women whole blood samples (n= 97) for the presence of Parvovirus B1
... Show MoreThe study was carried out to study the quality of 7 samples of imported frozen chicken that are available in locally markets. These samples were collected from Baghdad markets in June 2010. The results were showed that the all samples were not content the name of company and batch number one the labeling, while the microbial test refer to found contamination in all samples, but it in the limited of Iraqi standers specification for frozen chicken, also note Staphylococcus aureus in all samples, the samples C1 and C2 have Salmonella ohio, while not observe Coliform bacteria in all samples.
The recent emergence of sophisticated Large Language Models (LLMs) such as GPT-4, Bard, and Bing has revolutionized the domain of scientific inquiry, particularly in the realm of large pre-trained vision-language models. This pivotal transformation is driving new frontiers in various fields, including image processing and digital media verification. In the heart of this evolution, our research focuses on the rapidly growing area of image authenticity verification, a field gaining immense relevance in the digital era. The study is specifically geared towards addressing the emerging challenge of distinguishing between authentic images and deep fakes – a task that has become critically important in a world increasingly reliant on digital med
... Show MoreThe objectives of this study were to review the literature covering the perceptions about influenza vaccines in the Middle East and to determine factors influencing the acceptance of vaccination using Health Belief Model (HBM).
A comprehensive literature search was performed utilizing PubMed and Google Scholar databases. Three keywords were used: Influenza vaccine, perceptions and Middle East. Empirical studies that dealt with people/healthcare worker (HCW) perceptio