Preferred Language
Articles
/
3RYSG4cBVTCNdQwCKzdA
Modeling of Oil Viscosity for Southern Iraqi Reservoirs using Neural Network Method
...Show More Authors

The calculation of the oil density is more complex due to a wide range of pressuresand temperatures, which are always determined by specific conditions, pressure andtemperature. Therefore, the calculations that depend on oil components are moreaccurate and easier in finding such kind of requirements. The analyses of twenty liveoil samples are utilized. The three parameters Peng Robinson equation of state istuned to get match between measured and calculated oil viscosity. The Lohrenz-Bray-Clark (LBC) viscosity calculation technique is adopted to calculate the viscosity of oilfrom the given composition, pressure and temperature for 20 samples. The tunedequation of state is used to generate oil viscosity values for a range of temperature andpressure extends from the reservoir to surface conditions.The generated viscosity data is utilized in the neural network tool (NN) to get fittingmodel correlates the viscosity of oil with composition, pressure and temperature. Theresulted error and the correlation coefficient of the model constructed are close to 0and 1 respectively. The NN model is also tested with data that are not used in set upthe model. The results proved the validity of the model. Moreover, the model’soutcomes demonstrate its superiority to selected empirical correlations.

Crossref
View Publication
Publication Date
Mon Sep 14 2015
Journal Name
Day 2 Tue, September 15, 2015
Modeling and History Matching of a Fractured Reservoir in an Iraqi Oil Field
...Show More Authors
Abstract<p>In recent years the interest in fractured reservoirs has grown. The awareness has increased analysis of the role played by fractures in petroleum reservoir production and recovery. Since most Iraqi reservoirs are fractured carbonate rocks. Much effort was devoted to well modeling of fractured reservoirs and the impacts on production. However, turning that modeling into field development decisions goes through reservoir simulation. Therefore accurate modeling is required for more viable economic decision. Iraqi mature field being used as our case study. The key point for developing the mature field is approving the reservoir model that going to be used for future predictions. This can </p> ... Show More
View Publication
Scopus Crossref
Publication Date
Tue Jun 30 2009
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
The Effect of Extraction Temperature and Solvent to Oil Ratio on Viscosity Index of Mixed-medium Lubricating Oil Fraction by Using Solvents Extraction
...Show More Authors

In this study two types of extraction solvents were used to extract the undesirable polyaromatics, the first solvent was furfural which was used today in the Iraqi refineries and the second was NMP (N-methyl-2-pyrrolidone).
The studied effecting variables of extraction are extraction temperature ranged from 70 to 110°C and solvent to oil ratio in the range from 1:1 to 4:1.
The results of this investigation show that the viscosity index of mixed-medium lubricating oil fraction increases with increasing extraction temperature and reaches 107.82 for NMP extraction at extraction temperature 110°C and solvent to oil ratio 4:1, while the viscosity index reaches to 101 for furfural extraction at the same extraction temperature and same

... Show More
View Publication Preview PDF
Publication Date
Thu Jun 01 2023
Journal Name
Baghdad Science Journal
Modeling The Power Grid Network Of Iraq
...Show More Authors

Recently, the theory of Complex Networks gives a modern insight into a variety of applications in our life. Complex Networks are used to form complex phenomena into graph-based models that include nodes and edges connecting them. This representation can be analyzed by using network metrics such as node degree, clustering coefficient, path length, closeness, betweenness, density, and diameter, to mention a few. The topology of the complex interconnections of power grids is considered one of the challenges that can be faced in terms of understanding and analyzing them. Therefore, some countries use Complex Networks concepts to model their power grid networks. In this work, the Iraqi Power Grid network (IPG) has been modeled, visua

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Wed Jul 01 2015
Journal Name
Journal Of Engineering
Spiking Neural Network in Precision Agriculture
...Show More Authors

In this paper, precision agriculture system is introduced based on Wireless Sensor Network (WSN). Soil moisture considered one of environment factors that effect on crop. The period of irrigation must be monitored. Neural network capable of learning the behavior of the agricultural soil in absence of mathematical model. This paper introduced modified type of neural network that is known as Spiking Neural Network (SNN). In this work, the precision agriculture system  is modeled, contains two SNNs which have been identified off-line based on logged data, one of these SNNs represents the monitor that located at sink where the period of irrigation is calculated and the other represents the soil. In addition, to reduce p

... Show More
View Publication Preview PDF
Publication Date
Thu Dec 28 2017
Journal Name
Al-khwarizmi Engineering Journal
Tuning PID Controller by Neural Network for Robot Manipulator Trajectory Tracking
...Show More Authors

Ziegler and Nichols proposed the well-known Ziegler-Nichols method to tune the coefficients of PID controller. This tuning method is simple and gives fixed values for the coefficients which make PID controller have weak adaptabilities for the model parameters variation and changing in operating conditions. In order to achieve adaptive controller, the Neural Network (NN) self-tuning PID control is proposed in this paper which combines conventional PID controller and Neural Network learning capabilities. The proportional, integral and derivative (KP, KI, KD) gains are self tuned on-line by the NN output which is obtained due to the error value on the desired output of the system under control. The conventio

... Show More
View Publication Preview PDF
Publication Date
Fri Apr 28 2023
Journal Name
Mathematical Modelling Of Engineering Problems
Design Optimal Neural Network for Solving Unsteady State Confined Aquifer Problem
...Show More Authors

View Publication Preview PDF
Scopus (7)
Crossref (1)
Scopus Crossref
Publication Date
Tue Aug 01 2023
Journal Name
Baghdad Science Journal
An Effective Hybrid Deep Neural Network for Arabic Fake News Detection
...Show More Authors

Recently, the phenomenon of the spread of fake news or misinformation in most fields has taken on a wide resonance in societies. Combating this phenomenon and detecting misleading information manually is rather boring, takes a long time, and impractical. It is therefore necessary to rely on the fields of artificial intelligence to solve this problem. As such, this study aims to use deep learning techniques to detect Arabic fake news based on Arabic dataset called the AraNews dataset. This dataset contains news articles covering multiple fields such as politics, economy, culture, sports and others. A Hybrid Deep Neural Network has been proposed to improve accuracy. This network focuses on the properties of both the Text-Convolution Neural

... Show More
View Publication Preview PDF
Scopus (32)
Crossref (14)
Scopus Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Ieee Access
Modified Elman Spike Neural Network for Identification and Control of Dynamic System
...Show More Authors

View Publication
Scopus (25)
Crossref (21)
Scopus Clarivate Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Society Of Petroleum Engineering
Stress-dependent petrophysical properties of high heterogeneous carbonate tight oil reservoirs
...Show More Authors

Scopus (8)
Scopus
Publication Date
Wed Nov 11 2020
Journal Name
The Abu Dhabi International Petroleum Exhibition & Conference, Abu Dhabi, Uae, November 2020. Paper Number: Spe-203090-ms
Stress-Dependent Petrophysical Properties of High Heterogeneous Carbonate Tight Oil Reservoirs
...Show More Authors

As a reservoir is depleted due to production, pore pressure decreases leading to increased effective stress which causes a reduction in permeability, porosity, and possible pore collapse or compaction. Permeability is a key factor in tight reservoir development; therefore, understanding the loss of permeability in these reservoirs due to depletion is vital for effective reservoir management. The paper presents a case history on a tight carbonate reservoir in Iraq which demonstrates the behavior of rock permeability and porosity as a function of increasing effective stress simulating a depleting mode over given production time. The experimental results show unique models for the decline of permeability and porosity as function effective str

... Show More
View Publication