The regressor-based adaptive control is useful for controlling robotic systems with uncertain parameters but with known structure of robot dynamics. Unmodeled dynamics could lead to instability problems unless modification of control law is used. In addition, exact calculation of regressor for robots with more than 6 degrees of freedom is hard to be calculated, and the task could be more complex for robots. Whereas the adaptive approximation control is a powerful tool for controlling robotic systems with unmodeled dynamics. The local (partitioned) approximation-based adaptive control includes representation of the uncertain matrices and vectors in the robot model as finite combinations of basis functions. Update laws for the weighting matrices are obtained by the Lyapunov-like design. Therefore, this work is focused function approximation-based control algorithms considering centralized and decentralized approaches. In this work, the following control algorithms are designed: (1) Adaptive hybrid regressor-approximation control. This work attempts to combine the features of both the regressor and the approximation techniques in adaptive control. The regressor technique is a powerful tool for adaptive control of the known structure of modeling while the approximation is useful for estimation of time-varying uncertainty. Therefore, this work proposes adaptive hybrid regressor and approximation control for robots in both free and constrained spaces. The control law consists of three terms: (i) regressor term for initial estimation of the known structure of the robot dynamics, e.g. inertia matrix, Coriolis and centripetal matrix and gravity vector, and (ii) approximation term for estimation of internal and external disturbances resulted from the inexact calculation of regressor matrix and unknown modeling of friction, etc, and (iii) robust term consists of switching sgn(.) function. The control law is designed based on updating the uncertain parameters and the weighting coefficients corresponding to regressor and approximation respectively with position/force tracking purposes. The proposed controller is stable in the sense of Lyapunov stability. (2) Decentralized adaptive partitioned approximation control. Partitioned approximation control is avoided in most decentralized control algorithms; however, it is essential to design feedforward control with improved tracking accuracy. As a result, this work is focused on decentralized adaptive partitioned approximation control for complex robotic systems using the orthogonal basis functions as strong approximators. In essence, the partitioned approximation technique is intrinsically decentralized with some modifications. The proposed decentralized control law consists of three terms: the partitioned approximation-based feedforward term that is necessary for precise tracking, the high gain-based feedback term, and the adaptive sliding gain-based term for compensation of modeling error. The passivity property is essential to prove the stability of local stability of the individual subsystem with guaranteed global stability. Simulation experiments on 2-link robot and 6-link biped robot are performed to prove the effectiveness of the proposed algorithms.
The main objective of this paper is to designed algorithms and implemented in the construction of the main program designated for the determination the tenser product of representation for the special linear group.
Intrusion detection system is an imperative role in increasing security and decreasing the harm of the computer security system and information system when using of network. It observes different events in a network or system to decide occurring an intrusion or not and it is used to make strategic decision, security purposes and analyzing directions. This paper describes host based intrusion detection system architecture for DDoS attack, which intelligently detects the intrusion periodically and dynamically by evaluating the intruder group respective to the present node with its neighbors. We analyze a dependable dataset named CICIDS 2017 that contains benign and DDoS attack network flows, which meets certifiable criteria and is ope
... Show MoreThe purpose of this paper is to find the best multiplier approximation of unbounded functions in –space by using some discrete linear positive operators. Also we will estimate the degree of the best multiplier approximation in term of modulus of continuity and the averaged modulus.
Malicious software (malware) performs a malicious function that compromising a computer system’s security. Many methods have been developed to improve the security of the computer system resources, among them the use of firewall, encryption, and Intrusion Detection System (IDS). IDS can detect newly unrecognized attack attempt and raising an early alarm to inform the system about this suspicious intrusion attempt. This paper proposed a hybrid IDS for detection intrusion, especially malware, with considering network packet and host features. The hybrid IDS designed using Data Mining (DM) classification methods that for its ability to detect new, previously unseen intrusions accurately and automatically. It uses both anomaly and misuse dete
... Show MoreVaginal biopsies and smears were collected from ten adult local healthy goats. Routine histological methods were carried out on vaginal biopsies and then stained with PAS stain. The smears were stained with Methylene blue. All samples were inspected under light microscope. The present study found that many constituents of the wall of the vagina, which have an important functional role, were absent; among these were the vaginal glands, goblet cells, muscularis mucosa, and lymphatic nodules. On the other hand, vagina showed special compensatory histological mechanisms, namely, the deep epithelial folds, the well-developed germinated stratum basale, the apparent basement membrane, and the profuse defensive cells, such as neutrophils, m
... Show MoreEco-friendly concrete is produced using the waste of many industries. It reduces the fears concerning energy utilization, raw materials, and mass-produced cost of common concrete. Several stress-strain models documented in the literature can be utilized to estimate the ultimate strength of concrete components reinforced with fibers. Unfortunately, there is a lack of data on how non-metallic fibers, such as polypropylene (PP), affect the properties of concrete, especially eco-friendly concrete. This study presents a novel approach to modeling the stress-strain behavior of eco-friendly polypropylene fiber-reinforced concrete (PFRC) using meta-heuristic particle swarm optimization (PSO) employing 26 PFRC various mixtures. The cement was partia
... Show More