The intelligent buildings provided various incentives to get highly inefficient energy-saving caused by the non-stationary building environments. In the presence of such dynamic excitation with higher levels of nonlinearity and coupling effect of temperature and humidity, the HVAC system transitions from underdamped to overdamped indoor conditions. This led to the promotion of highly inefficient energy use and fluctuating indoor thermal comfort. To address these concerns, this study develops a novel framework based on deep clustering of lagrangian trajectories for multi-task learning (DCLTML) and adding a pre-cooling coil in the air handling unit (AHU) to alleviate a coupling issue. The proposed DCLTML exhibits great overall control and is suitable for multi-objective optimisation based on cooperative multi-agent systems (CMAS). The framework of DCLTML is used greedy iterative training to get an optimal set of weights and tabulated as a layer for each clustering structure. Such layers can deal with the challenges of large space and its massive data. Then the layer weights of each cluster are tuned by the Quasi-Newton (QN) algorithm to make the action sequence of CMAS optimal. Such a policy of CMAS effectively manipulates the inputs of the AHU, where the agents of the AHU activate the natural ventilation and set chillers into an idle state when the outdoor temperature crosses the recommended value. So, it is reasonable to assess the impact potential of thermal mass and hybrid ventilation strategy in reducing cooling energy; accordingly, the assigning results of the proposed DCLTML show that its main cooling coil saves >40% compared to the conventional benchmarks. Besides significant energy savings and improving environmental comfort, the DCLTML exhibits superior high-speed response and robustness performance and eliminates fatigue and wear due to shuttering valves. The results show that the DCLTML algorithm is a promising new approach for controlling HVAC systems. It is more robust to environmental variations than traditional controllers, and it can learn to control the HVAC system in a way that minimises energy consumption. The DCLTML algorithm is still under development, but it can potentially revolutionise how HVAC systems are controlled.
Crime is a threat to any nation’s security administration and jurisdiction. Therefore, crime analysis becomes increasingly important because it assigns the time and place based on the collected spatial and temporal data. However, old techniques, such as paperwork, investigative judges, and statistical analysis, are not efficient enough to predict the accurate time and location where the crime had taken place. But when machine learning and data mining methods were deployed in crime analysis, crime analysis and predication accuracy increased dramatically. In this study, various types of criminal analysis and prediction using several machine learning and data mining techniques, based o
Phase change material (PCM) is considered as one of the most effective thermal energy storage (TES) systems to balance energy supply and demand. A key challenge in designing efficient PCM-based TES systems lies in the enhancement of heat transmission during phase transition. This study numerically examines the privilege of employing twisted-fin arrays inside a shell-and-tube latent heat storage unit to improve the solidification performance. The presence of twisted fins contributes to the dominating role of heat conduction by their curved shapes, which restricts the role of natural convection but largely aids the overall heat-transfer process during solidification. The heat-discharge
This study aims to highlight the role of strategic leadership in adopting the intelligent organization model. The study was conducted on 7 economic organizations in Algeria. The study population consisted of 354 leaders, of whom a random sample of 176 leaders (managers, department heads, division heads, engineers) was selected. The researcher used a questionnaire as the main tool of the study. Statistical analysis and hypothesis testing were conducted using SEM (Structural Equation Modeling) with the aid of SPSS.v26 and AMOS.v24 software. The study concluded with a set of results, most notably: there is a statistically significant direct positive effect between strategic leadership and building intelligent organizations at a significance le
... Show MoreCurrent research aims to find out:
- Effect of using the active learning in the achievement of third grade intermediate students in mathematics.
- Effect of using of active learning in the tendency towards the study of mathematics for students of third grade intermediate.
In order to achieve the goals of the research, the researcher formulated the following two hypotheses null:
- There is no difference statistically significant at the level of significance (0.05) between two average of degrees to achievement
Simple, rapid and sensitive spectrophotometric method was proposed for the analysis of metoclopramide hydrochloride (MPH) in pure form as well as in pharmaceutical tablets. The method is based on the diazotization reaction of MPH with sodium nitrite in hydrochloric acid medium to form diazonium salt, which is coupled with 1-naphthol in sodium hydroxide medium to form azo dye, showing absorption maxima at 550 nm. Beer’s law is obeyed in the concentration range of 0.4 – 18 µg mL-1 of MPH with detection limit 0.5448 µg mL-1. The molar absorptivity and Sandell’s sensitivity are 3.4969 × 104 L mol-1 cm-1 and 0.0101 µg cm-2, respectively. The method was successfully applied to the determination of MPH in pharmaceutical tablets with
... Show More