The development of efficient and environmentally friendly catalysts for the electro-oxidation of hydrazine derivatives is of great importance in various industrial applications. In this study, we report the utilization of graphitebased catalysts for the electro-oxidation of hydrazine derivatives, using sodium chloride as a green and sustainable chemical approach. Graphite, a two-dimensional carbon material with exceptional properties, offers numerous advantages as a catalyst, including its high surface area, excellent electrical conductivity, and chemical stability. These characteristics make graphite an ideal candidate for promoting electrochemical reactions. Sodium chloride (NaCl), a readily available and cost-effective salt, serves as a green alternative to traditional oxidants used in hydrazine oxidation processes. By replacing conventional oxidizing agents with NaCl, we aim to reduce the environmental impact associated with the production and disposal of hazardous chemicals. This process enables the transformation of the HN-NH bond within hydrazines, leading to the formation of azo compounds (N¼N). Azo compounds are important organic molecules with diverse applications in organic synthesis. This novel approach has successfully showcased the efficacy of utilizing various azo compounds in 13 different examples, yielding excellent or moderate to good results. The method capitalizes on electricity as the final oxidizing agent, providing an environmentally friendly oxidation strategy. Its high efficiency and gentle reaction conditions make this technique valuable for synthesizing azo derivatives, even when working with hydrazines containing diverse functional groups, resulting in yields ranging from moderate to excellent. Through systematic experiments, we evaluated the catalytic performance of graphite-based catalysts in the electro-oxidation of hydrazine derivatives. The catalysts demonstrated remarkable catalytic activity due to their efficient conversion of hydrazine derivatives into desired products. Moreover, the system exhibited good stability and recyclability, suggesting its suitability for practical applications.
Structure type and disorder have become important questions in catalyst design, with the most active catalysts often noted to be “disordered” or “amorphous” in nature. To quantify the effects of disorder and structure type systematically, a test set of manganese(III,IV) oxides was developed and their reactivity as oxidants and catalysts tested against three substrates: methylene blue, hydrogen peroxide, and water. We find that disorder destabilizes the materialsthermodynamically, making them stronger chemical oxidantsbut not necessarily better catalysts. For the disproportionation of H2O2 and the oxidative decomposition of methylene blue, MnOx-mediated direct oxidation competes with catalytically mediated oxidation, making the most
... Show MoreThe sustainable environmental neighborhoods is sustainable development of neighborhoods that include considerations related to transport, density, urban forms, and environmental buildings and especially those related to social and functional integration, and civil society participation, This standard, which did not attract the attention of specialists in the 1990s, has today become a center of attention for all those interested in urbanism and sustainability. The problem of the research is the existence of urban problems in residential neighborhoods that lead to lack of sustainability in the city, and the research aims to explain the role and importance of environmental sustainability
This research aimed to predict the permanent deformation (rutting) in conventional and rubberized asphalt mixes under repeated load conditions using the Finite Element Method (FEM). A three-dimensional (3D) model was developed to simulate the Wheel Track Testing (WTT) loading. The study was conducted using the Abaqus/Standard finite element software. The pavement slab was simulated using a nonlinear creep (time-hardening) model at 40°C. The responses of the viscoplastic model under the influence of the trapezoidal amplitude of moving wheel loadings were determined for different speeds and numbers of cycles. The results indicated that a wheel speed increase from 0.5Km/h to 1.0Km/h decreased the rut depth by about 22% and 24% in conv
... Show MoreThere are many techniques for face recognition which compare the desired face image with a set of faces images stored in a database. Most of these techniques fail if faces images are exposed to high-density noise. Therefore, it is necessary to find a robust method to recognize the corrupted face image with a high density noise. In this work, face recognition algorithm was suggested by using the combination of de-noising filter and PCA. Many studies have shown that PCA has ability to solve the problem of noisy images and dimensionality reduction. However, in cases where faces images are exposed to high noise, the work of PCA in removing noise is useless, therefore adding a strong filter will help to im
... Show MoreThis study included synthesizing silver nanoparticles (AgNPs) in a green method using AgNO3 solution with glucose exposed to microwave radiation. The prepared NPs were also characterized using ultraviolet and visible (UV-vis) spectroscopy and scanning electron microscopy (SEM). The UV/vis spectroscopy confirmed the production of AgNPs, while SEM analysis showed that the typical spherical AgNPs were 30 nm and 50 nm in size for the NPs prepared using black tea (B) and green tea (G) as reducing agent, respectively. The changes in some of the biochemical parameters related to the liver and kidneys have been analyzed to evaluate the probable toxic effects of AgNPs. 40 adult male mice were included in this study. To assess the probable he
... Show MoreThis work intends to develop an effective heavy metal-free modifier having properties comparable to traditional stabilizers and flame retardants, simultaneously being environmentally friendly and may be superior in many aspects. The important requirement focused on is: how to increase thermal stability and flame retardancy of flexible poly(vinyl chloride). Due to the typical materials now used with poly(vinyl chloride), which increases health and environmental concerns, utilizing a novel heavy metal-free additive will make poly(vinyl chloride) substantially safer. We have used an artificial silicate for this aim, which proved to be an efficient flame retardant and surprisingly showed excellent heat stabilizing effect. Thermal stabi
... Show MoreOld Iraq includes the first experiences in establishing the first residential settlements in the Mesopotamian, and model villages designed and the pulp units in it and their natural matter, that made it perennial, and construction continues until now with it. These experiences were the basis for the emergence of the Iraqi civilization and thus the world and the beginning of writing, trade and the religions of the divine since before history, and then the Sumerian, Babylonian and Assyrian civilizations, and their villages that formed the Fertile Crescent.
There is a lack of knowledge and disregard for the distant and near history of Iraq in the field of rural housing, despite Iraq's leadership in this field, with the aim of the re
... Show MorePolycaprolactone polymer is widely used in medical applications due to its biocompatibility. Electro spinning was used to create poly (ε- caprolactone) (PCL) nanocomposite fiber mats containing hydroxyapatite (HA) at concentrations ranging from 0.05 to 0.4% wt. The chemical properties of the fabricated bio composite fibers were evaluated using FTIR and morphologically using field-emission scanning-electron microscopy (FESEM), Porosity, contact angle, as well as mechanical testing(Young Modulus and Tensile strength) of the nanofibers were also studied. The FTIR results showed that all the bonds appeared for the pure PCL fiber and the PCL/HA nano fibers. The FESEM nano fiber showed that the fiber diameter increased from 54.13 to 155.79 (n
... Show MoreBackground In recent years, there has been a notable increase in the level of attention devoted to exploring capabilities of nanoparticles, specifically gold nanoparticles AuNPs, within context of modern times. AuNPs possess distinct biophysical properties, as a novel avenue as an antibacterial agent targeting Streptococcus Mutans and Candida Albicans. The aim of this study to create a nano-platform that has the potential to be environmentally sustainable, in addition to exhibiting exceptional antimicrobial properties against Streptococcus Mutans as well as Candida Albicans. Methods this study involved utilization of
Thick films of poly(vinyl chloride)(PVC)& PVC doped with Zn(etx)2 salt complex have been prepared by cast method with fixed thickness almost (120±5) Microns. Optical studies were carried out in the wavelengths region(200-900)nm based on absorption & transmition measurement. Optical parameters such as absorption coefficient(?) ,refraction index(n) and extinction coefficient(K) were observed to be effected by adding the dopant.Electrical parameters such as real(?)& imaginary(?) part of dielectric constant were also calculated part of dielectric constant were also calculated from the optical parameters using Maxwell equation.