In data mining, classification is a form of data analysis that can be used to extract models describing important data classes. Two of the well known algorithms used in data mining classification are Backpropagation Neural Network (BNN) and Naïve Bayesian (NB). This paper investigates the performance of these two classification methods using the Car Evaluation dataset. Two models were built for both algorithms and the results were compared. Our experimental results indicated that the BNN classifier yield higher accuracy as compared to the NB classifier but it is less efficient because it is time-consuming and difficult to analyze due to its black-box implementation.
Objective: To evaluate nurses' practices concerning isolation techniques for Adult Leukemic Patients (ALP).
Methodology: A descriptive study was carried out at the isolation rooms at leukemic wards in Baghdad Teaching
Hospitals, starting from Jan. 27th 2008 up to the 27th of Apr. 2008. To achieve the objectives of study, a non-probability
"purposive" sample of (50) nurse was selected out of four Teaching Hospitals in Baghdad city were selected according
to the criteria of the study sample.
The study instrument consisted of two major parts. It is based on the review of literature. First is concerned with
demographic data for nurses; and the second part is observational tool (checklist) is composed of (83) item. The conte
Hydraulic fracturing is considered to be a vital cornerstone in decision making of unconventional reservoirs. With an increasing level of development of unconventional reservoirs, many questions have arisen regarding enhancing production performance of tight carbonate reservoirs, especially the evaluation of the potential for adapting multistage hydraulic fracturing technology in tight carbonate reservoirs to attain an economic revenue.
In this paper we present a feasibility study of multistage fractured horizontal well in typical tight carbonate reservoirs covering different values of permeability. We show that NPV is the suitable objective function for deciding on the optimum number
<p>Currently, breast cancer is one of the most common cancers and a main reason of women death worldwide particularly in<strong> </strong>developing countries such as Iraq. our work aims to predict the type of tumor whether benign or malignant through models that were built using logistic regression and neural networks and we hope it will help doctors in detecting the type of breast tumor. Four models were set using binary logistic regression and two different types of artificial neural networks namely multilayer perceptron MLP and radial basis function RBF. Evaluation of validated and trained models was done using several performance metrics like accuracy, sensitivity, specificity, and AUC (area under receiver ope
... Show MoreThe city of Karbala is one of the most important holy places for visitors and pilgrims from the Islamic faith, especially through the Arabian visit, when crowds of millions gather to commemorate the martyrdom of Imam Hussein. Offering services and medical treatments during this time is very important, especially when the crowds head to their destination (the holy shrine of Imam Hussein (a.s)). In recent years, the Arba'in visit has witnessed an obvious growth in the number of participants. The biggest challenge is the health risks, and the preventive measures for both organizers and visitors. Researchers identified various challenges and factors to facilitating the Arba'in visit. The purpose of this research is to deal with the religious an
... Show MoreOne of the most significant environmental issues facing the planet today is air pollution. Due to development in industry and population density, air pollution has lately gotten worse. Like many developing nations, Iraq suffers from air pollution, particularly in its urban areas with heavy industry. Our research was carried out in Baghdad's Al-Nahrawan neighbourhood. Recently, ground surveys and remote sensing were used to study the monitoring of air pollution. In order to extract different gaseous and particle data, Earth Data source, Google Earth Engine (GEE), and Geographic Information Systems (GIS) software were all employed. The findings demonstrated that there is a significant positive connection between data collected by ground-ba
... Show MoreThe seasonal behavior of the light curve for selected star SS UMI and EXDRA during outburst cycle is studied. This behavior describes maximum temperature of outburst in dwarf nova. The raw data has been mathematically modeled by fitting Gaussian function based on the full width of the half maximum and the maximum value of the Gaussian. The results of this modeling describe the value of temperature of the dwarf novae star system leading to identify the type of elements that each dwarf nova consisted of.
Modeling data acquisition systems (DASs) can support the vehicle industry in the development and design of sophisticated driver assistance systems. Modeling DASs on the basis of multiple criteria is considered as a multicriteria decision-making (MCDM) problem. Although literature reviews have provided models for DASs, the issue of imprecise, unclear, and ambiguous information remains unresolved. Compared with existing MCDM methods, the robustness of the fuzzy decision by opinion score method II (FDOSM II) and fuzzy weighted with zero inconsistency II (FWZIC II) is demonstrated for modeling the DASs. However, these methods are implemented in an intuitionistic fuzzy set environment that restricts the ability of experts to provide mem
... Show MoreThe speech recognition system has been widely used by many researchers using different
methods to fulfill a fast and accurate system. Speech signal recognition is a typical
classification problem, which generally includes two main parts: feature extraction and
classification. In this paper, a new approach to achieve speech recognition task is proposed by
using transformation techniques for feature extraction methods; namely, slantlet transform
(SLT), discrete wavelet transforms (DWT) type Daubechies Db1 and Db4. Furthermore, a
modified artificial neural network (ANN) with dynamic time warping (DTW) algorithm is
developed to train a speech recognition system to be used for classification and recognition
purposes. T