This research consists of two parts, the first part concern with analyzing the collected data of BOD and COD values in discharge waste water from Al-Dora refinery during 2010 to find the relationship between these two variables The results indicates that there is a high correlation between BOD and COD when using a natural logarithm model (0.86 ln(COD)) with correlation coefficient of 0.98. This relationship is useful in predicting the BOD value using the COD value. The second part includes analyzing collected data from the same site in order to find a relationsip between BOD and other parameters COD, Phenol(phe), Temperature(T), Oil, Sulphat(SO4),pH and Total dissolved solids( TDS) discharged from the refinery. The results indicated that the best mathematical model is BOD= 0.786 (ln(COD))^2- 3.077E83/Exp(10T) + 1.76E+48/Exp(0.1TDS)- 5.6507/Exp(100Phe) With correlation coefficient of 0.873. The presented research demonstrates many conclusions regarding the relation between BOD and other pollutions, it is clear that the relation between BOD and COD is a direct relation, while it’s a reverse relation with other pollutions and it’s also clear that a linear model can be used to represent the relation between BOD and COD for a value of COD approximately less than (50 mg/L).
Green buildings are considered more efficient than traditional buildings due to the incorporated techniques and the multidisciplinary specializations required to comply with their specifications, in addition to the advanced commissioning, which undergoes before handing over the buildings to the owners to ensure requirements conformance. As a result, the appropriate selection of a project delivery system acts as the essential factor that affects the performance of the project. This research aims at building a system that helps to select the best method to implement green buildings. Through studying the recent research approaches in project delivery systems, the factors that affect the selection of the optimal implementation method fo
... Show MorePatients infected with the COVID-19 virus develop severe pneumonia, which typically results in death. Radiological data show that the disease involves interstitial lung involvement, lung opacities, bilateral ground-glass opacities, and patchy opacities. This study aimed to improve COVID-19 diagnosis via radiological chest X-ray (CXR) image analysis, making a substantial contribution to the development of a mobile application that efficiently identifies COVID-19, saving medical professionals time and resources. It also allows for timely preventative interventions by using more than 18000 CXR lung images and the MobileNetV2 convolutional neural network (CNN) architecture. The MobileNetV2 deep-learning model performances were evaluated
... Show MoreDegenerate parabolic partial differential equations (PDEs) with vanishing or unbounded leading coefficient make the PDE non-uniformly parabolic, and new theories need to be developed in the context of practical applications of such rather unstudied mathematical models arising in porous media, population dynamics, financial mathematics, etc. With this new challenge in mind, this paper considers investigating newly formulated direct and inverse problems associated with non-uniform parabolic PDEs where the leading space- and time-dependent coefficient is allowed to vanish on a non-empty, but zero measure, kernel set. In the context of inverse analysis, we consider the linear but ill-pose
A factor group is a mathematical group obtained by aggregating similar elements of a larger group using an equivalence relation that preserves some of the group structure. In this paper, the factor groups K(SL(2,121)) and K(SL(2,169)) computed for each group from the character table of rational representations.