Deep Learning Techniques For Skull Stripping of Brain MR Images
Due to the importance of nanotechnology because of its features and applications in various fields, it has become the focus of attention of the world and researchers. In this study, the concept of nanotechnology and nanomaterials was identified, the most important methods of preparing them, as well as the preparation techniques and the most important devices used in their characterization.
Objective This research investigates Breast Cancer real data for Iraqi women, these data are acquired manually from several Iraqi Hospitals of early detection for Breast Cancer. Data mining techniques are used to discover the hidden knowledge, unexpected patterns, and new rules from the dataset, which implies a large number of attributes. Methods Data mining techniques manipulate the redundant or simply irrelevant attributes to discover interesting patterns. However, the dataset is processed via Weka (The Waikato Environment for Knowledge Analysis) platform. The OneR technique is used as a machine learning classifier to evaluate the attribute worthy according to the class value. Results The evaluation is performed using
... Show MoreTraumatic Brain Injury (TBI) is still considered a worldwide leading cause of mortality and morbidity. Within the last decades, different modalities were used to assess severity and outcome including Glasgow Coma Scale (GCS), imaging modalities, and even genetic polymorphism, however, determining the prognosis of TBI victims is still challenging requiring the emerging of more accurate and more applicable tools to surrogate other old modalities
Abstract The Object of the study aims to identify the effectiveness of using the 7E’s learning cycle to learn movement chains on uneven bars, for this purpose, we used the method SPSS. On a sample composed (20) students on collage of physical education at the university of Baghdad Chosen as two groups experimental and control group (10) student for each group, and for data collection, we used SPSS After collecting the results and having treated them statistically, we conclude the use 7E’s learning cycle has achieved remarkable positive progress, but it has diverged between to methods, On this basis, the study recommended the necessity of applying 7E’s learning cycle strategy in learning the movement chain on uneven bar
... Show MoreThe aim of this study to identify the effect of using two strategies for active learning ( Jigsaw Strategy & Problems Solving) in learning some balanced beam's skills in artistic gymnastics for women , as well as to identify the best of the three methods (jigsaw strategy , problems solving and the traditional method) in learning some skills balance beam , the research has used the experimental methodology, and the subject included the students of the college of Physical Education and Sports Sciences / University of Baghdad / third grade and by the lot was selected (10) students for each group of groups Search three and The statistical package for social sciences (SPSS) was used means, the standard deviation and the (T.test), the one way a n
... Show MoreThis research develops a new method based on spectral indices and random forest classifier to detect paddy rice areas and then assess their distributions regarding to urban areas. The classification will be conducted on Landsat OLI images and Landsat OLI/Sentinel 1 SAR data. Consequently, developing a new spectral index by analyzing the relative importance of Landsat bands will be calculated by the random forest. The new spectral index has improved depending on the most three important bands, then two additional indices including the normalized difference vegetation index (NDVI), and standardized difference built-up index (NDBI) have been used to extract paddy rice fields from the data. Several experiments being
... Show MoreIn the present work, pattern recognition is carried out by the contrast and relative variance of clouds. The K-mean clustering process is then applied to classify the cloud type; also, texture analysis being adopted to extract the textural features and using them in cloud classification process. The test image used in the classification process is the Meteosat-7 image for the D3 region.The K-mean method is adopted as an unsupervised classification. This method depends on the initial chosen seeds of cluster. Since, the initial seeds are chosen randomly, the user supply a set of means, or cluster centers in the n-dimensional space.The K-mean cluster has been applied on two bands (IR2 band) and (water vapour band).The textural analysis is used
... Show More