Finding communities of connected individuals in complex networks is challenging, yet crucial for understanding different real-world societies and their interactions. Recently attention has turned to discover the dynamics of such communities. However, detecting accurate community structures that evolve over time adds additional challenges. Almost all the state-of-the-art algorithms are designed based on seemingly the same principle while treating the problem as a coupled optimization model to simultaneously identify community structures and their evolution over time. Unlike all these studies, the current work aims to individually consider this three measures, i.e. intra-community score, inter-community score, and evolution of community over time. Here, we adopt a new perspective towards detecting the evolution of community structures. The proposed method realizes the decomposition of the problem into three essential components; searching in: intra-community connections, inter-community connections, and community evolution. A multi-objective optimization problem is defined to account for the different intra and inter community structures. Further, we formulate the community evolution problem as a Hidden Markov Model in an attempt to dexterously track the most likely sequence of communities. Then the new model, called Hidden Markov Model-based Multi-Objective evolutionary algorithm for Dynamic Community Detection (HMM-MODCD), uses a multi-objective evolutionary algorithm and Viterbi algorithm for formulating objective functions and providing temporal smoothness over time for clustering dynamic networks. The performance of the proposed algorithm is evaluated on synthetic and real-world dynamic networks and compared against several state-of-the-art algorithms. The results clearly demonstrate the effectiveness of the proposed algorithm to outperform other algorithms.
Identify the effect of an educational design according to the repulsive (allosteric) learning model on the achievement of chemistry and lateral thinking. The sample consisted of (59) students from third-grade intermediate students. They were randomly distributed into two groups (experimental and control), and the equivalence was done in (chronological age, previous achievement in chemistry, intelligence, lateral thinking). The (30) students from experimental group were taught according to the instructional design, other 29 students from the (control) group were taught according to the usual method. Two tests done, one of them is an achievement test consisted of (30) items of the type of multiple choice, the other was a lateral think
... Show MoreIn recent years, Bitcoin has become the most widely used blockchain platform in business and finance. The goal of this work is to find a viable prediction model that incorporates and perhaps improves on a combination of available models. Among the techniques utilized in this paper are exponential smoothing, ARIMA, artificial neural networks (ANNs) models, and prediction combination models. The study's most obvious discovery is that artificial intelligence models improve the results of compound prediction models. The second key discovery was that a strong combination forecasting model that responds to the multiple fluctuations that occur in the bitcoin time series and Error improvement should be used. Based on the results, the prediction acc
... Show Moreالخلاصة
اهتم الفكر السياسي في القرنين الاخيرين بدراسة الطبقات على نحو غير مسبوق, واصبح موضوع التحليل الطبقي المعني بالطبقات من حيث تعريفها, وتحديد موقعها في السلم الاجتماعي, فضلاً عن نوعية العلاقة بين شرائحها وفئاتها المختلفة من حيث الصراع والتناغم, المادة الرئيسة والموضوع الاكثر اهمية في دراسات الفكر السياسي والاجتماعي.ومن بين الطبقات, احتلت الطبقة الوسطى مكا
... Show More. In recent years, Bitcoin has become the most widely used blockchain platform in business and finance. The goal of this work is to find a viable prediction model that incorporates and perhaps improves on a combination of available models. Among the techniques utilized in this paper are exponential smoothing, ARIMA, artificial neural networks (ANNs) models, and prediction combination models. The study's most obvious discovery is that artificial intelligence models improve the results of compound prediction models. The second key discovery was that a strong combination forecasting model that responds to the multiple fluctuations that occur in the bitcoin time series and Error improvement should be used. Based on the results, the prediction a
... Show MoreThis paper is specifically a detailed review of the Spatial Quantile Autoregressive (SARQR) model that refers to the incorporation of quantile regression models into spatial autoregressive models to facilitate an improved analysis of the characteristics of spatially dependent data. The relevance of SARQR is emphasized in most applications, including but not limited to the fields that might need the study of spatial variation and dependencies. In particular, it looks at literature dated from 1971 and 2024 and shows the extent to which SARQR had already been applied previously in other disciplines such as economics, real estate, environmental science, and epidemiology. Accordingly, evidence indicates SARQR has numerous benefits compar
... Show MoreIncludes search unemployment concept ... types, graduate unemployment a model introduction to the researcher tackled the problem of unemployment being dangerous to the community, it's also growing in size year after year is a waste of a clear human capabilities, also addressed the importance of the research being a touch on the problem of unemployment and its concept and try to find solutions to them , and then came the goals set by the search researcher identifies unemployment and their causes and consequences and to provide a true picture of the situation of unemployed graduates and disclosure about how they treat their graduates for jobs provide him with a decent life problem. And adopted a researcher on the use of a questionnaire add
... Show MoreThe concept of implementing e-government systems is growing widely all around the world and becoming an interest to all governments. However, governments are still seeking for effective ways to implement e-government systems properly and successfully. As services of e-government increased and citizens’ demands expand, the e-government systems become more costly to satisfy the growing needs. The cloud computing is a technique that has been discussed lately as a solution to overcome some problems that an e-government implementation or expansion is going through. This paper is a proposal of a new model for e-government on basis of cloud computing. E-Government Public Cloud Model EGPCM, for e-government is related t
... Show MoreAbstract
Objective / Purpose: Online social relationships through the emergence of Web 2.0 applications have become a new trend for researchers to study the behavior of consumers to shop online, as well as social networking sites are technologies that opened up opportunities for new business models. Therefore, a new trend has emerged, called social trade technology. In order to understand the behavioral intentions of the beneficiaries to adopt the technology of social trade, the current research aims at developing an electronic readiness framework and UTAUT model to understand the beneficiary's adoption of social trade technology.
Design/ methodology/ Approach: To achieve the obje
... Show MoreIn this paper we estimate the coefficients and scale parameter in linear regression model depending on the residuals are of type 1 of extreme value distribution for the largest values . This can be regard as an improvement for the studies with the smallest values . We study two estimation methods ( OLS & MLE ) where we resort to Newton – Raphson (NR) and Fisher Scoring methods to get MLE estimate because the difficulty of using the usual approach with MLE . The relative efficiency criterion is considered beside to the statistical inference procedures for the extreme value regression model of type 1 for largest values . Confidence interval , hypothesis testing for both scale parameter and regression coefficients
... Show More The research aims to propose a plan to reduce the waiting times in the Multiple Server queuing model (M, M, C) (FCFS, ∞, ∞), and adopt this plan, mainly on the arrival rate (λ), some process have been achieved in order to reduce the arrival rate per service channel that should reduces the overall waiting time in the system. This research is on two sections where the first deals with theory and how it has been approved the proposed method in theory and in mathematical equations as well as the second section, which dealt with the practical goal of applying the proposed method and comparing it with the traditional way, which was followed in calculating the performance measures in this model.
&