The results of synthesizing a novel tridentate Schiff-base ligand and its metal complexes have been given. The ligand itself is described as being tridentate. The synthesis of the ligand has the following chemical formula: (E)-2- ((2S)-4-(tert-butyl) -2-((S)-(phenylamino) (p-tolyl) methyl) cyclohexylidene) hydrazine -1-carboxamide was produced as a byproduct of the reaction between benzoic acid and benzoic acid between (((4-(tert-butyl)-2-((S)-(phenylamino)(p-to and (HL). The ligand was reacted with 1:1 (L:M) mole ratios of ions containing Mn(II), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II), which resulted in the production of title complexes. In cases where it was necessary, physicochemical techniques were utilized to characterize both the ligand and the complexes. Examples include magnetic susceptibility and conductance measurements, microanalysis of elements, nuclear magnetic resonance (1H, 13C), mass spectrometry, Fourier transform infrared (FT-IR), electronic spectra, and more. The results of these studies demonstrated that the ions Mn (II), Co (II), Cu(II), Ni(II), Zn(II), and Cd(II) can be partitioned into four-coordinate and six-coordinate complexes, respectively. In addition, the TGA was used to investigate whether or not the ligand and specific complexes were thermally stable. Several different bacterial and fungus strains were utilized to examine the ligand and its complexes for potential antibacterial activity. According to the findings, the complexes are far more effective than the free ligand in combating a wider variety of species.
It is often noted that disordered materials have different chemical properties to their more “ordered” cousins. Quantifying these effects in terms of thermodynamics is challenging in part because disordered materials can be difficult to characterize and are frequently relatively unstable. During the course of our experiments to understand the effects of disorder in catalysts for water oxidation we observed that many disordered manganese and cobalt oxide water oxidation catalysts directly oxidized peroxide in contrast to their more ordered analogues which catalyzed its disproportionation, that is, MnO2+2H+ +H2O2! Mn2+ +2H2O+O2(oxidation) versus H2O2!H2O+1=2 O2(disproportionation). By measuring the efficiency for one reaction over the oth
... Show MoreIn this work, multilayer nanostructures were prepared from two metal oxide thin films by dc reactive magnetron sputtering technique. These metal oxide were nickel oxide (NiO) and titanium dioxide (TiO2). The prepared nanostructures showed high structural purity as confirmed by the spectroscopic and structural characterization tests, mainly FTIR, XRD and EDX. This feature may be attributed to the fine control of operation parameters of dc reactive magnetron sputtering system as well as the preparation conditions using the same system. The nanostructures prepared in this work can be successfully used for the fabrication of nanodevices for photonics and optoelectronics requiring highly-pure nanomaterials.
The present study envisaged utilizing 4-aminoantipyrine as key intermediate for the synthesis of some new derivatives bearing anti-bacterial and anti-cancer activities moieties viz., antipyrine diazenyl benzaldehydes 2(ad) which were obtained by coupling of diazotized 4-aminoantipyrine (1) with substituted benzaldehydes at 0◦C (iced) temperature. The other antipyrine derivatives where containing bis heterocycles like bis thiazolidinone-antipyrine (4), bis imidazolidinone -antipyrine (5) and bis azetidinone -antipyrine (6).These compounds were prepared through the reaction between 4- aminoantipyrine and terephthaldicarboxaldehyde to get (3) which were reacted with mercaptoacetic acid , glycine or chloroacetyl chloride separately to get com
... Show MoreOn the basis of known coumarin-based prodrug system, a novel coumarin-based mutual prodrug of 5-fluorouracil and dichloroacetic acid was designed, synthesized and evaluated as a promising oral chemotherapeutic agent basing on in vitro stability study in HCl buffer (pH 1.2) and in phosphate buffer (pH 7.4), as well as in vitro release study in human serum. The chemical structure of prodrug was confirmed by analyzing its FTIR, 1H NMR, 13C NMR and MS-ESI spectra. The results of in vitro kinetic study indicated that the prodrug was significantly stable in HCl and in phosphate buffers, and was hydrolyzed in human serum followed pseudo first order kinetics.
Keywords: Coumarin-bas
... Show More