The multi-focus image fusion method can fuse more than one focused image to generate a single image with more accurate description. The purpose of image fusion is to generate one image by combining information from many source images of the same scene. In this paper, a multi-focus image fusion method is proposed with a hybrid pixel level obtained in the spatial and transform domains. The proposed method is implemented on multi-focus source images in YCbCr color space. As the first step two-level stationary wavelet transform was applied on the Y channel of two source images. The fused Y channel is implemented by using many fusion rule techniques. The Cb and Cr channels of the source images are fused using principal component analysis (PCA). The proposed method performance is evaluated in terms of PSNR, RMSE and SSIM. The results show that the fusion quality of the proposed algorithm is better than obtained by several other fusion methods, including SWT, PCA with RGB source images and PCA with YCbCr source images.
A class of hyperrings known as divisible hyperrings will be studied in this paper. It will be presented as each element in this hyperring is a divisible element. Also shows the relationship between the Jacobsen Radical, and the set of invertible elements and gets some results, and linked these results with the divisible hyperring. After going through the concept of divisible hypermodule that presented 2017, later in 2022, the concept of the divisible hyperring will be related to the concept of division hyperring, where each division hyperring is divisible and the converse is achieved under conditions that will be explained in the theorem 3.14. At the end of this paper, it will be clear that the goal of this paper is to study the concept
... Show MoreDespite ample research on soft linear spaces, there are many other concepts that can be studied. We introduced in this paper several new concepts related to the soft operators, such as the invertible operator. We investigated some properties of this kind of operators and defined the spectrum of soft linear operator along with a number of concepts related with this definition; the concepts of eigenvalue, eigenvector, eigenspace are defined. Finally the spectrum of the soft linear operator was divided into three disjoint parts.
The general objective of surface shape descriptors techniques is to categorize several surface shapes from collection data. Gaussian (K) and Mean (H) curvatures are the most broadly utilized indicators for surface shape characterization in collection image analysis. This paper explains the details of some descriptions (K and H), The discriminating power of 3D descriptors taken away from 3D surfaces (faces) is analyzed and present the experiment results of applying these descriptions on 3D face (with polygon mesh and point cloud representations). The results shows that Gaussian and Mean curvatures are important to discover unique points on the 3d surface (face) and the experiment result shows that these curvatures are very useful for some
... Show MoreBrachycerous Dipteran species on alfalfa plant Medicago sativa surveyed in several regions of Iraq from March to November 2012. The study was registered 14 species belonging to nine genera and four families. The results showed that Limnophra quaterna, Atherigona laevigata and Atherigona theodori as new records to Iraq and new pests of alfalfa.
The main focus of this article is to introduce the notion of rough pentapartitioned neutrosophic set and rough pentapartitioned neutrosophic topology by using rough pentapartitioned neutrosophic lower approximation, rough pentapartitioned neutrosophic upper approximation, and rough pentapartitioned neutrosophic boundary region. Then, we provide some basic properties, namely operations on rough pentapartitioned neutrosophic set and rough pentapartitioned neutrosophic topology. By defining rough pentapartitioned neutrosophic set and topology, we formulate some results in the form of theorems, propositions, etc. Further, we give some examples to justify the definitions introduced in this article.
In this paper, we introduce and study the concepts of hollow – J–lifting modules and FI – hollow – J–lifting modules as a proper generalization of both hollow–lifting and J–lifting modules . We call an R–module M as hollow – J – lifting if for every submodule N of M with is hollow, there exists a submodule K of M such that M = K Ḱ and K N in M . Several characterizations and properties of hollow –J–lifting modules are obtained . Modules related to hollow – J–lifting modules are given .
This paper is mainly concerned with the study of the moral aspects that prompts William Shakespeare to attempt a romance in which he has embedded the epitome of his thought, experience, and philosophy concerning certain significant aspects of human life whose absence or negligence may threaten human existence, peace, and stability. From the beginning of history man realizes the importance of prosperity on the many and various levels that touch and address his needs and desires—natural, material, and spiritual. The Tempest, due to the dramatist's awareness of the aforementioned values, reflects the dramatist's duty as to projecting and unfolding these important aspects, rec
... Show MoreThe definition of semi-preopen sets were first introduced by "Andrijevic" as were is defined by :Let (X , ï´ ) be a topological space, and let A ⊆, then A is called semi-preopen set if ⊆∘ . In this paper, we study the properties of semi-preopen sets but by another definition which is equivalent to the first definition and we also study the relationships among it and (open, α-open, preopen and semi-p-open )sets.
This article is devoted to presenting results on invariant approximations over a non-star-shsped weakly compact subset of a complete modular space by introduced a new notion called S-star-shaped with center f: if be a mapping and , . Then the existence of common invariant best approximation is proved for Banach operator pair of mappings by combined the hypotheses with Opial’s condition or demi-closeness condition
In this paper we study the concepts of δ-small M-projective module and δ-small M-pseudo projective Modules as a generalization of M-projective module and M-Pseudo Projective respectively and give some results.