People’s ability to quickly convey their thoughts, or opinions, on various services or items has improved as Web 2.0 has evolved. This is to look at the public perceptions expressed in the reviews. Aspect-based sentiment analysis (ABSA) deemed to receive a set of texts (e.g., product reviews or online reviews) and identify the opinion-target (aspect) within each review. Contemporary aspect-based sentiment analysis systems, like the aspect categorization, rely predominantly on lexicon-based, or manually labelled seeds that is being incorporated into the topic models. And using either handcrafted rules or pre-labelled clues for performing implicit aspect detection. These constraints are restricted to a particular domain or language which is domain-dependent. In this work, we first propose a novel unsupervised probabilistic model Topic-seeds Latent Dirichlet Allocation (TSLDA) that leverages semantic regularities for the articulation of explicit aspect-categories. Then, based on the articulated categories, a distributed vector is used for the identification of implicit aspects. The experimental results show that our approach outperforms baseline methods for different domain-data with minimal configurations. Specifically, utilizing the RI measure, our proposed TSLDA outperformed multiple clustering and topic models by an average of 0.83% in diverse domain-data, and roughly 0.89% using the Precision metric for implicit aspect detection.
In this paper, the error distribution function is estimated for the single index model by the empirical distribution function and the kernel distribution function. Refined minimum average variance estimation (RMAVE) method is used for estimating single index model. We use simulation experiments to compare the two estimation methods for error distribution function with different sample sizes, the results show that the kernel distribution function is better than the empirical distribution function.
This work addressed the assignment problem (AP) based on fuzzy costs, where the objective, in this study, is to minimize the cost. A triangular, or trapezoidal, fuzzy numbers were assigned for each fuzzy cost. In addition, the assignment models were applied on linguistic variables which were initially converted to quantitative fuzzy data by using the Yager’sorankingi method. The paper results have showed that the quantitative date have a considerable effect when considered in fuzzy-mathematic models.
The main problem when dealing with fuzzy data variables is that it cannot be formed by a model that represents the data through the method of Fuzzy Least Squares Estimator (FLSE) which gives false estimates of the invalidity of the method in the case of the existence of the problem of multicollinearity. To overcome this problem, the Fuzzy Bridge Regression Estimator (FBRE) Method was relied upon to estimate a fuzzy linear regression model by triangular fuzzy numbers. Moreover, the detection of the problem of multicollinearity in the fuzzy data can be done by using Variance Inflation Factor when the inputs variable of the model crisp, output variable, and parameters are fuzzed. The results were compared usin
... Show MoreThis growing interest of the international scientific specialized commissions is due to the role that the audit committee can play, as one of companies’ governance tools, to increase the accuracy and transparency of the financial information disclosed by the companies, through its oversight role on the process of preparing financial reports, its supervision on the internal audit function within the companies, and supporting its independency, as well as coordinating the efforts between the internal control unites and the external auditor represented by the (Board of Supreme Audit) to clear the observations and irregularities in order to reduce the fraud cases.
This research was built on an applied sample of audit committee works
... Show MoreThe research aims to enhance the level of evaluation of the performance of banking transactions control policies and procedures. The research is based on the following hypothesis: efficient transactions control policies and procedures contribute enhancing financial reporting, by assessing non-application gap of those policies and procedures in a manner that helps to prevent, discover, and correct material misstatements. The researchers designed an examination list that includes the control policies and procedures related to the transactions, as a guide to the bank audit program prepared by the Federal Financial Supervision Bureau. The research methodology is
... Show MoreReceipt Date:10/11/2021 Acceptance Date:29/12/2021 Publication Date:31/12/2021
This work is licensed under a Creative Commons Attribution 4.0 International License.
The study aimed to clarify the conceptual explanations and the theoretical rooting of the concept of the populist phenomenon. And explore the political and cultural implications and connotations contained in populist political discourse. And to stand on the foundations and meanings on w
... Show MoreAnalysis the economic and financial phenomena and other requires to build the appropriate model, which represents the causal relations between factors. The operation building of the model depends on Imaging conditions and factors surrounding an in mathematical formula and the Researchers target to build that formula appropriately. Classical linear regression models are an important statistical tool, but used in a limited way, where is assumed that the relationship between the variables illustrations and response variables identifiable. To expand the representation of relationships between variables that represent the phenomenon under discussion we used Varying Coefficient Models
... Show MoreRecently Tobit Quantile Regression(TQR) has emerged as an important tool in statistical analysis . in order to improve the parameter estimation in (TQR) we proposed Bayesian hierarchical model with double adaptive elastic net technique and Bayesian hierarchical model with adaptive ridge regression technique .
in double adaptive elastic net technique we assume different penalization parameters for penalization different regression coefficients in both parameters λ1and λ2 , also in adaptive ridge regression technique we assume different penalization parameters for penalization different regression coefficients i
... Show MoreVolleyball is one of the sports that require physical and skill abilities thus many teaching models appeared to teach these abilities like group investigation model. The research aimed at identifying the effect of group investigation model on learning underarm and overhead passing in volleyball. The researchers hypothesized statistical differences between pre and posttests in learning underarm and overhead passing in volleyball as well as differences in posttests of controlling and experimental groups in learning underarm and overhead passing in volleyball. The researcher used the experimental method on (30) second year female students of physical education and sport sciences college/ university of Baghdad. Group investigation model was app
... Show More