To assess the biochemical, mechanical and structural characteristics of retained dentin after applying three novel bromelain‑contained chemomechanical caries removal (CMCR) formulations in comparison to the conventional excavation methods (hand and rotary) and a commercial papain‑contained gel (Brix 3000). Seventy‑two extracted permanent molars with natural occlusal carious lesions (score > 4 following the International Caries Detection and Assessment System (ICDAS‑II)) were randomly allocated into six groups (n = 12) according to the excavation methods: hand excavation, rotary excavation, Brix 3000, bromelain‑contained gel (F1), bromelain‑chloramine‑T (F2), and bromelain chlorhexidine gel (F3). The superficial and deeper layers of residual dentin were examined by Raman microspectroscopy and Vickers microhardness, while the surface morphology was assessed by the scanning electron microscope (SEM). A multivariate analysis of variance followed by Tukey’s test (p > 0.05) was performed for data analysis. The novel formulations showed an ability to preserve the partially demineralized dentin that showed a reduced phosphate content with a higher organic matrix. This was associated with lower Vickers microhardness values in comparison to sound dentin and rotary excavation. The collagen integration ratio in all methods was close to sound dentin (0.9–1.0) at the deeper dentin layer. The bromelain‑chloramine‑T gel (F2) produced the smoothest smear‑free dentin surface with a higher number of opened dentinal tubules. In contrast, dense smearing covering the remaining dentin was observed in the manual and rotary methods with obstructed dentin tubule orifices. The bromelain‑contained formulations can be considered a new minimally invasive approach for selectively removing caries in deep cavitated dentin lesions
A research was conducted to determine the feasibility of using adsorption process to remove boron from aqueous solutions using batch technique. Three adsorbent materials; magnesium, aluminum and iron oxide were investigated to find their abilities for boron removal. The effects of operational parameters on boron removal efficiency for each material were determined.
The experimental results revealed that maximum boron removal was achieved at pH 9.5 for magnesium oxide and 8 for aluminum and iron oxide. The percentage of boron adsorbed onto magnesium,aluminum and iron oxide reaches up to 90, 42.5 and 41.5% respectively under appropriate conditions. Boron concentration in effluent water after adsorption via magnesium oxide comply with th
Abstract
The removal of water turbidity by using crumb rubber filter was investigated .The present study was conducted to evaluate the effect of variation of influent water turbidity (10, 25 and 50 NTU), media size (0.6and 1.14mm), filtration rate (25, 45 and 65 l/hr) and bed depth (30 and 60 cm) on the performance of mono crumb rubber filter in response to the effluent filtered water turbidity and head loss development, and compare it with that of conventional sand filter.Results revealed that 25 l/hr flow rate and 25 NTU influent turbidity were the best operating conditions. smaller media size and higher bed depth gave the best removal efficiency while higher media size and small bed depth gave lower head
... Show MoreBackground: Nanotechnology represents a new science that promises to provide a broad range of uses and improved technologies for biological and biomedical applications. One of the reasons behind the intense interest is that nanotechnology permits synthesis of materials that have structure is less than 100 nanometers. The present work revealed the effect of zinc oxide nanoparticles (ZnO NPs) on Streptococcus mutans of Human Saliva in comparison to de-ionized water. Materials and methods: Streptococcus mutans were isolated from saliva of forty eight volunteers of both sexes their age range between 18-22 years and then purified and diagnosed according to morphological characteristic and biochemical tests. Different concentrations of ZnO NPs w
... Show MoreThe major goal of this research was to use the Euler method to determine the best starting value for eccentricity. Various heights were chosen for satellites that were affected by atmospheric drag. It was explained how to turn the position and velocity components into orbital elements. Also, Euler integration method was explained. The results indicated that the drag is deviated the satellite trajectory from a keplerian orbit. As a result, the Keplerian orbital elements alter throughout time. Additionally, the current analysis showed that Euler method could only be used for low Earth orbits between (100 and 500) km and very small eccentricity (e = 0.001).
In this work laser detection and tracking system (LDTS) is designed and implemented using a fuzzy logic controller (FLC). A 5 mW He-Ne laser system and an array of nine PN photodiodes are used in the detection system. The FLC is simulated using MATLAB package and the result is stored in a lock up table to use it in the real time operation of the system. The results give a good system response in the target detection and tracking in the real time operation.