Inferential methods of statistical distributions have reached a high level of interest in recent years. However, in real life, data can follow more than one distribution, and then mixture models must be fitted to such data. One of which is a finite mixture of Rayleigh distribution that is widely used in modelling lifetime data in many fields, such as medicine, agriculture and engineering. In this paper, we proposed a new Bayesian frameworks by assuming conjugate priors for the square of the component parameters. We used this prior distribution in the classical Bayesian, Metropolis-hasting (MH) and Gibbs sampler methods. The performance of these techniques were assessed by conducting data which was generated from two and three-component mixture of the Rayleigh distribution according to several scenarios and comparing the results of the scenarios by calculating the mean of classification successful rate (MCSR) and the mean of mean square error(MMSE). The results showed that Gibbs sampler algorithm yields a better computation results than the others in terms of MMSE and MCSR.
The proper operation, and control of wastewater treatment plants, is receiving an increasing attention, because of the rising concern about environmental issues. In this research a mathematical model was developed to predict biochemical oxygen demand in the waste water discharged from Abu-Ghraib diary factory in Baghdad using Artificial Neural Network (ANN).In this study the best selection of the input data were selected from the recorded parameters of the wastewater from the factory. The ANN model developed was built up with the following parameters: Chemical oxygen demand, Dissolved oxygen, pH, Total dissolved solids, Total suspended solids, Sulphate, Phosphate, Chloride and Influent flow rate. The results indicated that the constructed A
... Show MoreThe purpose of this paper is to examine absorbance for the removal of the Red Congo using wheat husk as a biological pesticide. Several experiments have been conducted with the aim of configuring breakthrough data in a fluidized bed reactor. The minimum fluidized velocities of the bed were found to be 0.031 mm/s for mish sizes of (250) µm diameter with study the mass transfer be calculated KL values. The results showed a well-fitting with the experimental data. Different operating conditions were selected: bed height (2, 5 and 10) cm, flow rate (90, 100and 120) ml/sec and particle diameter (250, 600, 1000) µm. The breakthrough curves were plotted for Congo Red, Values showed that the lower the bed, the lower the number of ad
... Show MoreThe investigation of determining solutions for the Diophantine equation over the Gaussian integer ring for the specific case of is discussed. The discussion includes various preliminary results later used to build the resolvent theory of the Diophantine equation studied. Our findings show the existence of infinitely many solutions. Since the analytical method used here is based on simple algebraic properties, it can be easily generalized to study the behavior and the conditions for the existence of solutions to other Diophantine equations, allowing a deeper understanding, even when no general solution is known.
This study deals with the intellectual representations whose intellectual systems are incarnated in the Jewish personality, which is considered one of the complex intellectual systems that has caused controversy throughout the ages because of the ambiguity due to the religious and psychological factors that were reflected directly and strongly on the intellectual structure of the Jewish community in general and the Jewish - Zionist personality in particular, in an attempt (to create new dimensions embodied by intellectual representations of a human nature embodied by what that - peaceful - religiously oppressed - psychologically and socially isolated character presents, because of the curse of the peoples of the world that was a cause fo
... Show MoreIn this paper, we introduce the concept of cubic bipolar-fuzzy ideals with thresholds (α,β),(ω,ϑ) of a semigroup in KU-algebra as a generalization of sets and in short (CBF). Firstly, a (CBF) sub-KU-semigroup with a threshold (α,β),(ω,ϑ) and some results in this notion are achieved. Also, (cubic bipolar fuzzy ideals and cubic bipolar fuzzy k-ideals) with thresholds (α,β),(ω ,ϑ) are defined and some properties of these ideals are given. Relations between a (CBF).sub algebra and-a (CBF) ideal are proved. A few characterizations of a (CBF) k-ideal with thresholds (α, β), (ω,ϑ) are discussed. Finally, we proved that a (CBF) k-ideal and a (CBF) ideal with thresholds (α, β), (ω,ϑ) of a KU-semi group are equivalent relations.