Preferred Language
Articles
/
2RfUTo8BVTCNdQwCC2ok
Stability and Bifurcation of a Prey-Predator-Scavenger Model in the Existence of Toxicant and Harvesting
...Show More Authors

In this paper a prey-predator-scavenger food web model is proposed and studied. It is assumed that the model considered the effect of harvesting and all the species are infected by some toxicants released by some other species. The stability analysis of all possible equilibrium points is discussed. The persistence conditions of the system are established. The occurrence of local bifurcation around the equilibrium points is investigated. Numerical simulation is used and the obtained solution curves are drawn to illustrate the results of the model. Finally, the nonexistence of periodic dynamics is discussed analytically as well as numerically.

Scopus Clarivate Crossref
Publication Date
Wed Jan 02 2019
Journal Name
Differential Equations And Dynamical Systems
Stability and Bifurcation in a Prey–Predator–Scavenger System with Michaelis–Menten Type of Harvesting Function
...Show More Authors

View Publication
Scopus (15)
Crossref (9)
Scopus Clarivate Crossref
Publication Date
Fri Nov 01 2019
Journal Name
Journal Of Physics: Conference Series
The Bifurcation analysis of Prey-Predator Model in The Presence of Stage Structured with Harvesting and Toxicity
...Show More Authors
Abstract<p>For a mathematical model the local bifurcation like pitchfork, transcritical and saddle node occurrence condition is defined in this paper. With the existing of toxicity and harvesting in predator and prey it consist of stage-structured. Near the positive equilibrium point of mathematical model on the Hopf bifurcation with particular emphasis it established. Near the equilibrium point E<sub>0</sub> the transcritical bifurcation occurs it is described with analysis. And it shown that at equilibrium points E<sub>1</sub> and E<sub>2</sub> happened the occurrence of saddle-node bifurcation. At each point the pitch fork bifurcation occurrence is not happened. </p> ... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Mon Apr 04 2022
Journal Name
Communications In Mathematical Biology And Neuroscience
Stability and bifurcation of a prey-predator system incorporating fear and refuge
...Show More Authors

It is proposed and studied a prey-predator system with a Holling type II functional response that merges predation fear with a predator-dependent prey's refuge. Understanding the impact of fear and refuge on the system's dynamic behavior is one of the objectives. All conceivable steady-states are investigated for their stability. The persistence condition of the system has been established. Local bifurcation analysis is performed in the Sotomayor sense. Extensive numerical simulation with varied parameters was used to explore the system's global dynamics. A limit cycle and a point attractor are the two types of attractors in the system. It's also interesting to note that the system exhibits bi-stability between these 2 types of attractors.

... Show More
View Publication Preview PDF
Scopus (10)
Scopus Clarivate Crossref
Publication Date
Thu May 28 2020
Journal Name
Iraqi Journal Of Science
A Prey-Predator Model with Michael Mentence Type of Predator Harvesting and Infectious Disease in Prey
...Show More Authors

A prey-predator model with Michael Mentence type of predator harvesting and infectious disease in prey is studied. The existence, uniqueness and boundedness of the solution of the model are investigated. The dynamical behavior of the system is studied locally as well as globally. The persistence conditions of the system are established. Local bifurcation near each of the equilibrium points is investigated. Finally, numerical simulations are given to show our obtained analytical results.

View Publication Preview PDF
Scopus (8)
Crossref (2)
Scopus Crossref
Publication Date
Sun Oct 30 2022
Journal Name
Iraqi Journal Of Science
Stability Analysis of a Prey-Predator Model with Prey Refuge and Fear of Adult Predator
...Show More Authors

     This paper is concerned with a Holling-II stage-structured predator-prey system in which predators are divided into an immature and mature predators. The aim is to explore the impact of the prey's fear caused by the dread of mature predators in a prey-predator model including intraspecific competitions and prey shelters. The theoretical study includes the local and global stability analysis for the three equilibrium points of the system and shows the prey's fear may lead to improving the stability at the positive equilibrium point. A numerical analysis is given to ensure the accuracy of the theoretical outcomes and to testify the conditions of stability of the system near the non-trivial equilibrium points.

View Publication Preview PDF
Scopus (6)
Crossref (1)
Scopus Crossref
Publication Date
Mon Feb 01 2021
Journal Name
Journal Of Physics: Conference Series
The Fear Effect on a Food Chain Prey-Predator Model Incorporating a Prey Refuge and Harvesting
...Show More Authors
Abstract<p>In this paper, we investigate the impact of fear on a food chain mathematical model with prey refuge and harvesting. The prey species reproduces by to the law of logistic growth. The model is adapted from version of the Holling type-II prey-first predator and Lotka-Volterra for first predator-second predator model. The conditions, have been examined that assurance the existence of equilibrium points. Uniqueness and boundedness of the solution of the system have been achieve. The local and global dynamical behaviors are discussed and analyzed. In the end, numerical simulations are confirmed the theoretical results that obtained and to display the effectiveness of varying each parameter</p> ... Show More
View Publication
Scopus (10)
Crossref (7)
Scopus Crossref
Publication Date
Wed Jun 03 2020
Journal Name
Journal Of Applied Mathematics
Order and Chaos in a Prey-Predator Model Incorporating Refuge, Disease, and Harvesting
...Show More Authors

In this paper, a mathematical model consisting of a prey-predator system incorporating infectious disease in the prey has been proposed and analyzed. It is assumed that the predator preys upon the nonrefugees prey only according to the modified Holling type-II functional response. There is a harvesting process from the predator. The existence and uniqueness of the solution in addition to their bounded are discussed. The stability analysis of the model around all possible equilibrium points is investigated. The persistence conditions of the system are established. Local bifurcation analysis in view of the Sotomayor theorem is carried out. Numerical simulation has been applied to investigate the global dynamics and specify the effect

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Tue Feb 27 2024
Journal Name
Mathematical Modelling Of Engineering Problems
Dynamics of a Fractional-Order Prey-Predator Model with Fear Effect and Harvesting
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
The Bifurcation Analysis of Food Web Prey- Predator Model with Toxin
...Show More Authors
Abstract<p>Local and global bifurcations of food web model consists of immature and mature preys, first predator, and second predator with the current of toxicity and harvesting was studied. It is shown that a trans-critical bifurcation occurs at the equilibrium point <italic>E</italic> <sub>0</sub>, and it revealed the existence of saddle-node bifurcation occurred at equilibrium points <italic>E</italic> <sub>1</sub>, <italic>E</italic> <sub>2</sub> and <italic>E</italic> <sub>3</sub>. At any point, the occurrence of bifurcation of the pitch for</p> ... Show More
View Publication
Scopus Crossref
Publication Date
Tue Jan 10 2012
Journal Name
Iraqi Journal Of Science
THE IMPACT OF DISEASE AND HARVESTING ON THE DYNAMICAL BEHAVIOR OF PREY PREDATOR MODEL
...Show More Authors

In this paper, a harvested prey-predator model involving infectious disease in prey is considered. The existence, uniqueness and boundedness of the solution are discussed. The stability analysis of all possible equilibrium points are carried out. The persistence conditions of the system are established. The behavior of the system is simulated and bifurcation diagrams are obtained for different parameters. The results show that the existence of disease and harvesting can give rise to multiple attractors, including chaos, with variations in critical parameters.

View Publication Preview PDF