The introduction of Industry 4.0, to improve Internet of Things (IoT) standards, has sparked the creation of 5G, or highly sophisticated wireless networks. There are several barriers standing in the way of 5G green communication systems satisfying the expectations for faster networks, more user capacity, lower resource consumption, and cost‐effectiveness. 5G standards implementation would speed up data transmission and increase the reliability of connected devices for Industry 4.0 applications. The demand for intelligent healthcare systems has increased globally as a result of the introduction of the novel COVID‐19. Designing 5G communication systems presents research problems such as optimizing resource usage, managing mobility, ensuring cost‐efficiency, managing interference, and maximizing spectral efficiency. The fast advancement of artificial intelligence (AI) in several domains yields improved performance in contrast to traditional methods. Hence, including AI in 5G standards would enhance performance by catering to diverse end‐user applications. Initially, we provide an overview of concepts such as Industry 4.0, the 5G standard, and recent developments in the sphere of wireless communications in the future. The goal is to use 5G technology to look at current research problems. We present a new architecture for Industry 4.0 and 5G‐compliant smart healthcare systems. We develop and run the proposed model to investigate the current 5G methods using the Network Simulator (NS2). The results of the simulation show that 5G resource management and interference management approaches already in use face challenges including performance trade‐offs.
A new method for construction ion-selective electrode (ISE) by heating reaction of methyl orange with ammonium reineckate using PVC as plasticizer for determination methyl orange and determination Amitriptyline Hydrochloried drug by formation ion-pair on electrode surface . The characteristics of the electrode and it response as following : internal solution 10-4M , pH (2.5-5) ,temperature (20-30) and response time 2 sec. Calibration response for methyl orange over the concentrationrange 10-3 -10-9 M with R=0.9989 , RSD%=0.1052, D.O.L=0.315X10-9 MEre%=(-0.877- -2.76) , Rec%.=(97.230 -101.711) .
Background: Maxillary first premolar with wide MOD cavity more susceptible to fracture. The aim of this study was to assess the influence of cavity design for cusp coverage on the fracture resistance of weakened maxillary first premolar restored with CAD/CAM hybrid ceramic versus nanohybide composite. Materials and Methods: Fifty six intact maxillary first premolars of approximately comparable sizes were divided into seven groups eight for each: Group A: Intact teeth (control group); Group B: teeth prepared for MOD inlay; Group C: teeth prepared for MOD onlay covering the lingual cusp; Group D: teeth prepared for MOD covering buccal and lingual cusps ,the previous three groups indirectly restored with nanohybrid composite (3M ESPE Z 250 X
... Show MoreIn general, path-planning problem is one of most important task in the field of robotics. This paper describes the path-planning problem of mobile robot based on various metaheuristic algorithms. The suitable collision free path of a robot must satisfies certain optimization criteria such as feasibility, minimum path length, safety and smoothness and so on. In this research, various three approaches namely, PSO, Firefly and proposed hybrid FFCPSO are applied in static, known environment to solve the global path-planning problem in three cases. The first case used single mobile robot, the second case used three independent mobile robots and the third case applied three follow up mobile robot. Simulation results, whi
... Show MoreAerial Robot Arms (ARAs) enable aerial drones to interact and influence objects in various environments. Traditional ARA controllers need the availability of a high-precision model to avoid high control chattering. Furthermore, in practical applications of aerial object manipulation, the payloads that ARAs can handle vary, depending on the nature of the task. The high uncertainties due to modeling errors and an unknown payload are inversely proportional to the stability of ARAs. To address the issue of stability, a new adaptive robust controller, based on the Radial Basis Function (RBF) neural network, is proposed. A three-tier approach is also followed. Firstly, a detailed new model for the ARA is derived using the Lagrange–d’A
... Show MoreAspect categorisation and its utmost importance in the eld of Aspectbased Sentiment Analysis (ABSA) has encouraged researchers to improve topic model performance for modelling the aspects into categories. In general, a majority of its current methods implement parametric models requiring a pre-determined number of topics beforehand. However, this is not e ciently undertaken with unannotated text data as they lack any class label. Therefore, the current work presented a novel non-parametric model drawing a number of topics based on the semantic association present between opinion-targets (i.e., aspects) and their respective expressed sentiments. The model incorporated the Semantic Association Rules (SAR) into the Hierarchical Dirichlet Proce
... Show MoreThe virtual decomposition control (VDC) is an efficient tool suitable to deal with the full-dynamics-based control problem of complex robots. However, the regressor-based adaptive control used by VDC to control every subsystem and to estimate the unknown parameters demands specific knowledge about the system physics. Therefore, in this paper, we focus on reorganizing the equation of the VDC for a serial chain manipulator using the adaptive function approximation technique (FAT) without needing specific system physics. The dynamic matrices of the dynamic equation of every subsystem (e.g. link and joint) are approximated by orthogonal functions due to the minimum approximation errors produced. The contr
This article presents a new cascaded extended state observer (CESO)-based sliding-mode control (SMC) for an underactuated flexible joint robot (FJR). The control of the FJR has many challenges, including coupling, underactuation, nonlinearity, uncertainties and external disturbances, and the noise amplification especially in the high-order systems. The proposed control integrates the CESO and SMC, in which the CESO estimates the states and disturbances, and the SMC provides the system robustness to the uncertainty and disturbance estimation errors. First, a dynamic model of the FJR is derived and converted from an underactuated form to a canonical form via the Olfati transformation and a flatness approach, which reduces the complexity of th
... Show MoreThe choice of binary Pseudonoise (PN) sequences with specific properties, having long period high complexity, randomness, minimum cross and auto- correlation which are essential for some communication systems. In this research a nonlinear PN generator is introduced . It consists of a combination of basic components like Linear Feedback Shift Register (LFSR), ?-element which is a type of RxR crossbar switches. The period and complexity of a sequence which are generated by the proposed generator are computed and the randomness properties of these sequences are measured by well-known randomness tests.
The aim of human lower limb rehabilitation robot is to regain the ability of motion and to strengthen the weak muscles. This paper proposes the design of a force-position control for a four Degree Of Freedom (4-DOF) lower limb wearable rehabilitation robot. This robot consists of a hip, knee and ankle joints to enable the patient for motion and turn in both directions. The joints are actuated by Pneumatic Muscles Actuators (PMAs). The PMAs have very great potential in medical applications because the similarity to biological muscles. Force-Position control incorporating a Takagi-Sugeno-Kang- three- Proportional-Derivative like Fuzzy Logic (TSK-3-PD) Controllers for position control and three-Proportional (3-P) controllers for force contr
... Show MoreCancer is in general not a result of an abnormality of a single gene but a consequence of changes in many genes, it is therefore of great importance to understand the roles of different oncogenic and tumor suppressor pathways in tumorigenesis. In recent years, there have been many computational models developed to study the genetic alterations of different pathways in the evolutionary process of cancer. However, most of the methods are knowledge-based enrichment analyses and inflexible to analyze user-defined pathways or gene sets. In this paper, we develop a nonparametric and data-driven approach to testing for the dynamic changes of pathways over the cancer progression. Our method is based on an expansion and refinement of the pathway bei
... Show More