This paper provides an attempt for modeling rate of penetration (ROP) for an Iraqi oil field with aid of mud logging data. Data of Umm Radhuma formation was selected for this modeling. These data include weight on bit, rotary speed, flow rate and mud density. A statistical approach was applied on these data for improving rate of penetration modeling. As result, an empirical linear ROP model has been developed with good fitness when compared with actual data. Also, a nonlinear regression analysis of different forms was attempted, and the results showed that the power model has good predicting capability with respect to other forms.
Tin oxide was deposited by using vacuum thermal method on silicon wafer engraved by Computer Numerical Controlled (CNC) Machine. The inscription was engraved by diamond-made brine. Deep 0.05 mm in the form of concentric squares. Electrical results in the dark were shown high value of forward current and the high value of the detection factor from 6.42 before engraving to 10.41 after engraving. (I-V) characters in illumination with powers (50, 100, 150, 200, 250) mW/cm2 show Improved properties of the detector, Especially at power (150, 200, 250) mW/cm2. Response improved in rise time from 2.4 μs to 0.72 μs and time of inactivity improved 515.2 μs to 44.2 μs. Sensitivity angle increased at zone from 40o to 65o.
Artificial lift techniques are a highly effective solution to aid the deterioration of the production especially for mature oil fields, gas lift is one of the oldest and most applied artificial lift methods especially for large oil fields, the gas that is required for injection is quite scarce and expensive resource, optimally allocating the injection rate in each well is a high importance task and not easily applicable. Conventional methods faced some major problems in solving this problem in a network with large number of wells, multi-constrains, multi-objectives, and limited amount of gas. This paper focuses on utilizing the Genetic Algorithm (GA) as a gas lift optimization algorit
Economic performance is one of the most important indicators of economic activity and with the performance of the economy progress varied sources of output and increase economic growth rates and per capita national income, and to recover the business environment and increase investment rates and rising effectiveness of the financial and monetary institutions and credit market. Which leads to increased employment rates and reducing unemployment rates and the elimination of many of the social problems and improve the average per capita income as well as improve the level of national income.
The input / output tables is a technique mathematical indicates economic performance
... Show MoreThis research analyzes the level of the short circuit effect of the Iraqi super network and decides the suitable location for the High Voltage Direct Current (HVDC) connections in order to obtain the best short circuit reduction of the total currents of the buses in the network. The proposed method depends on choosing the transmission lines for Alternating current (AC) system that suffers from high Short Circuit Levels (SCLs) in order to reduce its impact on the transmission system and on the lines adjacent to it and this after replacing the alternating current (AC) line by direct current (DC) line. In this paper, Power System Simulator for Engineering (PSS/E) is used to model two types of HVDC lines in an effective regi
... Show MoreA total of 96 stool samples were collected from children with bloody diarrhea from two hospitals in Baghdad. All samples were surveyed and examined for the presence of the Escherichia coli O157:H7 and differentiate it from other Non -Sorbitol Fermenting Escherichia coli (NSF E. coli). The Bacterial isolates were identifed by using morphological diagnostic methods, Samples were cultured on liquid enrichment medium, incubated at 37C? for 24 hrs, and then cultured on Cefixime Tellurite -Sorbitol MacConkey Agar (CT- SMAC). 32 non-sorbitol fermenting bacterial isolates were obtained of which 11 were identified as Escherichia coli by using traditional biochemical tests and API20E diagnostic system without differentiation between
... Show MoreDBN Rashid, INTERNATIONAL JOURNAL OF DEVELOPMENT IN SOCIAL SCIENCE AND HUMANITIES, 2021
A comparative study was done on the adsorption of methyl orange dye (MO) using non-activated and activated corn leaves with hydrochloric acid as an adsorbent material. Scanning electron microscopy (SEM) and Fourier Transform Infrared spectroscopy (FTIR) were utilized to specify the properties of adsorbent material. The effect of several variables (pH, initial dye concentration, temperature, amount of adsorbent and contact time) on the removal efficiency was studied and the results indicated that the adsorption efficiency increases with the increase in the concentration of dye, adsorbent dosage and contact time, while inversely proportional to the increase in pH and temperature for both the treated and untreated corn leaves. The equi
... Show MoreIn this research, the problem of multi- objective modal transport was formulated with mixed constraints to find the optimal solution. The foggy approach of the Multi-objective Transfer Model (MOTP) was applied. There are three objectives to reduce costs to the minimum cost of transportation, administrative cost and cost of the goods. The linear membership function, the Exponential membership function, and the Hyperbolic membership function. Where the proposed model was used in the General Company for the manufacture of grain to reduce the cost of transport to the minimum and to find the best plan to transfer the product according to the restrictions imposed on the model.
Deep learning has recently received a lot of attention as a feasible solution to a variety of artificial intelligence difficulties. Convolutional neural networks (CNNs) outperform other deep learning architectures in the application of object identification and recognition when compared to other machine learning methods. Speech recognition, pattern analysis, and image identification, all benefit from deep neural networks. When performing image operations on noisy images, such as fog removal or low light enhancement, image processing methods such as filtering or image enhancement are required. The study shows the effect of using Multi-scale deep learning Context Aggregation Network CAN on Bilateral Filtering Approximation (BFA) for d
... Show More