New Schiff-base ligands bearing tetrazole moiety and their polymeric metal complexes with Co(II), Ni(II) and Cd(II) ions are reported. Ligands were prepared in a multiple-step reaction. The reaction of sodium 2,6- diformylphenolate and cyclohexane-1,3-dione with 5-amino-2-fluorobenzonitrile resulted in the isolation of two precursors sodium 2,6-bis((E)-(3-cyano-4-fluorophenylimino)methyl)-4-methylphenolate 1 and 5,5'- (1E,1'E)-cyclohexane-1,3-diylidenebis- (azan-1-yl-1-ylidene)bis(2-fluorobenzonitrile) 2, respectively. The reaction of precursors with azide gave the required ligands; sodium 2,6-bis((E)-(4-fluoro-3-(1H-tetrazol-5- yl)phenylimino)methyl)-4-methylphenolate (NaL) and (N, N'E, N, N'E)-N, N'-(cyclohexane-1,3-diylidene)bis(4- fluoro-3-(1H-tetrazol-5-yl)aniline) (L1). The reaction of these ligands with the appropriate metal ions gave polymeric metal complexes of the formulae {[M2(L)]Cl}n and [M(L1)Cl2]n (where M = Co(II), Ni(II) and Cd(II)). A range of techniques were used to confirm the entity of ligands and their complexes. The formation of ligands and mode of complexation and geometrical structure of the title polymeric complexes were verified using FTIR, electronic spectra, NMR, ESMS, magnetic susceptibility, micro-elemental analysis, metal content, chloride content and conductance. The analytical and spectroscopic data indicated the formation of four-coordinate complexes, with a tetrahedral geometry for Co(II) and Cd(II), and square planer for Ni(II) in L- and L1 complexes. Biological evaluation of ligands and their polymeric complexes against gram-positive bacteria (G+), Bacillus stubtili, Staphylococcus aureus, and gram-negative bacteria (G-), Escherichia coli and Pseudomonas aeruginosa, showed ligands and their polymeric metal complexes have a good effect on the screened bacteria.
Face recognition is a crucial biometric technology used in various security and identification applications. Ensuring accuracy and reliability in facial recognition systems requires robust feature extraction and secure processing methods. This study presents an accurate facial recognition model using a feature extraction approach within a cloud environment. First, the facial images undergo preprocessing, including grayscale conversion, histogram equalization, Viola-Jones face detection, and resizing. Then, features are extracted using a hybrid approach that combines Linear Discriminant Analysis (LDA) and Gray-Level Co-occurrence Matrix (GLCM). The extracted features are encrypted using the Data Encryption Standard (DES) for security
... Show MoreThe main objective of this research is to find the coefficient of permeability (k) of the soil and especially clayey soil by finding the degree of consolidation (rate of consolidation). New modify procedure is proposed by using the odometer (consolidation) device. The ordinary conventional permeability test usually takes a long time by preparing and by testing and this could cause some problems especially if there is a need to do a large number of this test and there were a limited number of technicians and/or apparatus. From this point of view the importance of this research is clear, since the modified procedure will require a time of 25 minute only. Derivation made to produce an equation which could be used to fined the permeabi
... Show MoreRecently, numerous the generalizations of Hurwitz-Lerch zeta functions are investigated and introduced. In this paper, by using the extended generalized Hurwitz-Lerch zeta function, a new Salagean’s differential operator is studied. Based on this new operator, a new geometric class and yielded coefficient bounds, growth and distortion result, radii of convexity, star-likeness, close-to-convexity, as well as extreme points are discussed.
It is an established fact that substantial amounts of oil usually remain in a reservoir after primary and secondary processes. Therefore; there is an ongoing effort to sweep that remaining oil. Field optimization includes many techniques. Horizontal wells are one of the most motivating factors for field optimization. The selection of new horizontal wells must be accompanied with the right selection of the well locations. However, modeling horizontal well locations by a trial and error method is a time consuming method. Therefore; a method of Artificial Neural Network (ANN) has been employed which helps to predict the optimum performance via proposed new wells locations by incorporatin
Strong and ∆-convergence for a two-step iteration process utilizing asymptotically nonexpansive and total asymptotically nonexpansive noneslf mappings in the CAT(0) spaces have been studied. As well, several strong convergence theorems under semi-compact and condition (M) have been proved. Our results improve and extend numerous familiar results from the existing literature.