Preferred Language
Articles
/
2BayiIkBVTCNdQwCs4pV
A comprehensive review on modelling the adsorption process for heavy metal removal from waste water using artificial neural network technique
...Show More Authors

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Jan 01 2019
Journal Name
Desalination And Water Treatment
Synthesis of chitosan-iron keplerate composite as an adsorbent for removal of toxic ions from water
...Show More Authors

View Publication
Scopus (3)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Mon Jan 01 2018
Journal Name
Association Of Arab Universities Journal Of Engineering Sciences
Treatment of Sulfate in Sand by Using Magnetic Water Process
...Show More Authors

One of the most important problems in concrete production in Iraq and other country is the high sulfate content in sand that led to damage of concrete and hence reduces its compressive strength and may leads to cracking due to internal sulfate attack and delay ettringite formation. The magnetic water treatment process is adopted in this study. Many samples with different SO3 content are treated with magnetic water (12, 8, 4 and 2)L that needed for each 1kg of sand with the magnetic intensity (9000 and 5000) Gaus. The magnetic water needed is reduced with less SO3 content in sand. The ACI 211.1-91 concrete mix design was used in this research with slump range (75- 100) mm and the specified compressive strength (35MPa). The compressive streng

... Show More
Preview PDF
Publication Date
Sat Jul 22 2023
Journal Name
Journal Of Engineering
Removal of Boron from Simulated Iraqi Surface Water by Electrocoagulation Method
...Show More Authors

The removal of boron from aqueous solution was carried out by electrocoagulation (EC) using magnesium electrodes as anode and stainless steel electrodes as cathode. Several operating parameters on the removal efficiency of boron were investigated, such as initial pH, current density, initial boron ion concentration, NaCl concentration, spacing between electrodes, electrode material, and presence of carbonate concentration. The optimum removal efficiency of 91. 5 % was achieved at a current density of 3 mA/cm² and  pH = 7 using (Mg/St. St. ) electrodes, within 45 min of operating time. The concentration of NaCl was o. 1 g/l with a 0.5cm spacing between the electrodes. First and second order rate equation were applied to study adsorp

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Sep 30 2023
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Removal of Lead Ions from Wastewater by using a Local Adsorbent from Charring Tea Wastes
...Show More Authors

   Adsorption of lead ions from wastewater by native agricultural waste, precisely tea waste. After the activation and carbonization of tea waste, there was a substantial improvement in surface area and other physical characteristics which include density, bulk density, and porosity. FTIR analysis indicates that the functional groups in tea waste adsorbent are aromatic and carboxylic. It can be concluded that the tea waste could be a good sorbent for the removal of Lead ions from wastewater. Different dosages of the adsorbents were used in the batch studies. A random series of experiments indicated a removal degree efficiency of lead reaching (95 %) at 5 ppm optimum concentration, with adsorbents R2 =97.75% for tea. Three mo

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Dec 11 2023
Journal Name
International Journal Of Phytoremediation
Adsorption of methyl orange on low-cost adsorbent natural materials and modified natural materials: a review
...Show More Authors

Recently a large number of extensive studies have amassed that describe the removal of dyes from water and wastewater using natural adsorbents and modified materials. Methyl orange dye is found in wastewater streams from various industries that include textiles, plastics, printing and paper among other sources. This article reviews methyl orange adsorption onto natural and modified materials. Despite many techniques available, adsorption stands out for efficient water and wastewater treatment for its ease of operation, flexibility and large-scale removal of colorants. It also has a significant potential for regeneration recovery and recycling of adsorbents in comparison to other water treatment methods. The adsorbents described herein were

... Show More
Preview PDF
Publication Date
Mon Oct 16 2023
Journal Name
International Journal Of Phytoremediation
Adsorption of methyl orange on low-cost adsorbent natural materials and modified natural materials: a review
...Show More Authors

View Publication
Scopus (10)
Crossref (8)
Scopus Clarivate Crossref
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Biosorption of Ciprofloxacin (CIP) using the Waste of Extraction Process of Microalgae: The Equilibrium Isotherm and Kinetic Study
...Show More Authors

       Scientists are investigating the efficacy of different biosorbents for promoting economic and environmental viability in purifying contaminants. Among the primary by-products of biodiesel production is waste microalgae biomass, which has the potential to be used as a cheap biosorbent for the treatment of pollution. In the present study, the biomass left over after extracting the chlorella vulgaris was used to test the potential biosorption of CIP from simulated aqueous solutions. Bisorbent's ability was characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). Analysis with a Fourier Transform Infrared Spectrometer revealed that C

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jul 21 2023
Journal Name
Journal Of Engineering
Boron Removal by Adsorption onto Different Oxides
...Show More Authors

A research was conducted to determine the feasibility of using adsorption process to remove boron from aqueous solutions using batch technique. Three adsorbent materials; magnesium, aluminum and iron oxide were investigated to find their abilities for boron removal. The effects of operational parameters on boron removal efficiency for each material were determined.
The experimental results revealed that maximum boron removal was achieved at pH 9.5 for magnesium oxide and 8 for aluminum and iron oxide. The percentage of boron adsorbed onto magnesium,aluminum and iron oxide reaches up to 90, 42.5 and 41.5% respectively under appropriate conditions. Boron concentration in effluent water after adsorption via magnesium oxide comply with th

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Mar 30 2019
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Removal of Manganese Ions (Mn2+) from a Simulated Wastewater by Electrocoagulation/ Electroflotation Technologies with Stainless Steel Mesh Electrodes: Process Optimization Based on Taguchi Approach
...Show More Authors

This study depicts the removal of Manganese ions (Mn2+) from simulated wastewater by combined electrocoagulation/ electroflotation technologies. The effects of initial Mn concentration, current density (C.D.), electrolysis time, and different mesh numbers of stainless steel screen electrodes were investigated in a batch cell by adopting Taguchi experimental design to explore the optimum conditions for maximum removal efficiency of Mn. The results of multiple regression and signal to noise ratio (S/N) showed that the optimum conditions were Mn initial concentration of 100 ppm, C.D. of 4 mA/cm2, time of 120 min, and mesh no. of 30 (wire/inch). Also, the relative significance of each factor was attained by the analysis

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Sat Mar 30 2019
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Removal of Manganese Ions (Mn2+) from a Simulated Wastewater by Electrocoagulation/ Electroflotation Technologies with Stainless Steel Mesh Electrodes: Process Optimization Based on Taguchi Approach
...Show More Authors

This study depicts the removal of Manganese ions (Mn2+) from simulated wastewater by combined electrocoagulation/ electroflotation technologies. The effects of initial Mn concentration, current density (C.D.), electrolysis time, and different mesh numbers of stainless steel screen electrodes were investigated in a batch cell by adopting Taguchi experimental design to explore the optimum conditions for maximum removal efficiency of Mn. The results of multiple regression and signal to noise ratio (S/N) showed that the optimum conditions were Mn initial concentration of 100 ppm, C.D. of 4 mA/cm2, time of 120 min, and mesh no. of 30 (wire/inch). Also, the relative significance of each factor was attained by the analysis of variance (ANO

... Show More
View Publication Preview PDF
Crossref (5)
Crossref