In aspect-based sentiment analysis ABSA, implicit aspects extraction is a fine-grained task aim for extracting the hidden aspect in the in-context meaning of the online reviews. Previous methods have shown that handcrafted rules interpolated in neural network architecture are a promising method for this task. In this work, we reduced the needs for the crafted rules that wastefully must be articulated for the new training domains or text data, instead proposing a new architecture relied on the multi-label neural learning. The key idea is to attain the semantic regularities of the explicit and implicit aspects using vectors of word embeddings and interpolate that as a front layer in the Bidirectional Long Short-Term Memory Bi-LSTM. First, we trained the proposed domain-trained word embeddings (Dt-WE) model using explicit and implicit aspects. Second, interpolate Dt-WE model as a front layer in Bi-LSTM. Finally, extract implicit aspects by testing the trained architecture using the opinionated reviews that comprise multiple implicit aspects. Our model outperforms several of the current methods for implicit aspect extraction.
Students’ feedback is crucial for educational institutions to assess the performance of their teachers, most opinions are expressed in their native language, especially for people in south Asian regions. In Pakistan, people use Roman Urdu to express their reviews, and this applied in the education domain where students used Roman Urdu to express their feedback. It is very time-consuming and labor-intensive process to handle qualitative opinions manually. Additionally, it can be difficult to determine sentence semantics in a text that is written in a colloquial style like Roman Urdu. This study proposes an enhanced word embedding technique and investigates the neural word Embedding (Word2Vec and Glove) to determine which perfo
... Show MoreThe research included five sections containing the first section on the introduction of the research and its importance and was addressed to the importance of the game of gymnastic and skilled parallel effectiveness and the importance of learning, but the problem of research that there is a difference in learning this skill and difficulty in learning may be one of the most important reasons are fear and fear of falling and injury, And a lack of sense of the movement of the movement is one of the obstacles in the completion of the skill and the goal of research to design a device that helps in learning the skill of descending Almtor facing with half a cycle according to the typical locomotor track on the parallel device of the technical men'
... Show MoreIn the 20th century, the concept of "sarcasm" has relatively prevailed, and in this sense, it is a method in the art of conversation that wants to keep the question about the intended meaning, that is, "saying something and suggesting its opposite."
There are other concepts that indicate that sarcasm is saying something in a way that provokes the recipient of the statement an infinite number of different interpretations, with multiple readers of different interpretations. While the philosophy of irony stands by the standards of things, exaggeration or minimization, this manipulation takes place within the enjoyment. However, it's a method to present sharp criticism in an atmosphere of criticism that differs from generation to gener
The purpose of this study was to evaluate the epidemiological characteristics of the mandibular fractures relating to gender, age, the etiology of injury, and the rendered treatment modalities and complications. The data of the patients who sustained mandibular fractures were retrieved and were analyzed retrospectively, and based on these data a descriptive analysis was conducted. A total of 112 patients were included in this study; the most common cause was road traffic accidents (RTAs) followed by assaults and missile injuries. The most frequently involved age group was 11 to 20 years, treatment modalities included conservative, closed reduction and indirect fixation, and open reduction and internal fixation (ORIF) in 11.6, 79.5, and 8.9%
... Show More
Predicting peterophysical parameters and doing accurate geological modeling which are an active research area in petroleum industry cannot be done accurately unless the reservoir formations are classified into sub-groups. Also, getting core samples from all wells and characterize them by geologists are very expensive way; therefore, we used the Electro-Facies characterization which is a simple and cost-effective approach to classify one of Iraqi heterogeneous carbonate reservoirs using commonly available well logs.
The main goal of this work is to identify the optimum E-Facies units based on principal components analysis (PCA) and model based cluster analysis(MC
... Show MoreOne of the concerns of adopting an e-voting systems in the pooling place of any critical elections is the possibility of compromising the voting machine by a malicious piece of code, which could change the votes cast systematically. To address this issue, different techniques have been proposed such as the use of vote verification techniques and the anonymous ballot techniques, e.g., Code Voting. Verifiability may help to detect such attack, while the Code Voting assists to reduce the possibility of attack occurrence. In this paper, a new code voting technique is proposed, implemented and tested, with the aid of an open source voting. The anonymous ballot improved accordingly the paper audit trail used in this machine. The developed system,
... Show MoreMachine learning (ML) is a key component within the broader field of artificial intelligence (AI) that employs statistical methods to empower computers with the ability to learn and make decisions autonomously, without the need for explicit programming. It is founded on the concept that computers can acquire knowledge from data, identify patterns, and draw conclusions with minimal human intervention. The main categories of ML include supervised learning, unsupervised learning, semisupervised learning, and reinforcement learning. Supervised learning involves training models using labelled datasets and comprises two primary forms: classification and regression. Regression is used for continuous output, while classification is employed
... Show More