Academic chemical laboratories (ACL) are considered public places the employees come in contact with a variety of pollutants. The aim of the current study was to detect heavy metals levels in the indoor air of ACL in two universities in Baghdad city and assess their levels in the academic employees’ scalp hair as biomarkers. Air samples inside ACL were collected to detect Fe, Cd, Zn, Pb and Cu. Scalp hair samples were collected from 40 adult chemical laboratory employees aged 30-60 years, who worked 5 days/week for 6 hours a day. Personal information relating to employees such as age, duration of exposure, smoking habit and sex, was collected as a questionnaire. The results of this study concluded that academic laboratory employees were exposed to high levels of heavy metals which was proven through the use of scalp hair; old ages, prolonged working periods, smoking habit have significant effects in increasing the levels of heavy metals in scalp hair, while the employees’ gender variation did not have a significant effect.
Currently, with the huge increase in modern communication and network applications, the speed of transformation and storing data in compact forms are pressing issues. Daily an enormous amount of images are stored and shared among people every moment, especially in the social media realm, but unfortunately, even with these marvelous applications, the limited size of sent data is still the main restriction's, where essentially all these applications utilized the well-known Joint Photographic Experts Group (JPEG) standard techniques, in the same way, the need for construction of universally accepted standard compression systems urgently required to play a key role in the immense revolution. This review is concerned with Different
... Show MoreAbstract Software-Defined Networking (commonly referred to as SDN) is a newer paradigm that develops the concept of a software-driven network by separating data and control planes. It can handle the traditional network problems. However, this excellent architecture is subjected to various security threats. One of these issues is the distributed denial of service (DDoS) attack, which is difficult to contain in this kind of software-based network. Several security solutions have been proposed recently to secure SDN against DDoS attacks. This paper aims to analyze and discuss machine learning-based systems for SDN security networks from DDoS attack. The results have indicated that the algorithms for machine learning can be used to detect DDoS
... Show MoreImplementation of TSFS (Transposition, Substitution, Folding, and Shifting) algorithm as an encryption algorithm in database security had limitations in character set and the number of keys used. The proposed cryptosystem is based on making some enhancements on the phases of TSFS encryption algorithm by computing the determinant of the keys matrices which affects the implementation of the algorithm phases. These changes showed high security to the database against different types of security attacks by achieving both goals of confusion and diffusion.