This work focuses on the preparation of pure nanocrystalline SnO2 and SnO2:Cu thin films on cleaned glass substrates utilizing a sol-gel spin coating and chemical bath deposition (CBD) procedures. The primary aim of this study is to investigate the possible use of these thin films in the context of gas sensor applications. The films underwent annealing in an air environment at a temperature of 500 ◦C for duration of 60 minutes. The thickness of the film that was deposited may be estimated to be around 300 nm. The investigation included an examination of the structural, optical, electrical, and sensing characteristics, which were explored across various preparation circumstances, specifically focusing on varied concentrations of Cu-doping (2, 4, and 6 wt.%). The deposited films were analyzed by several techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and optical absorption spectroscopy. The films generated by the spin coating method had a tetragonal rutile structure, while the films created via the chemical bath deposition (CBD) technique displayed both tetragonal rutile and orthorhombic structures. The spin coating technique was used to make films of several weight percentages (0, 2, 4, and 6 wt.%). The resulting crystallite sizes were examined and found to be 23 nm, 18 nm, 14 nm, and 10.5 nm, respectively. Similarly, films made using the chemical bath deposition (CBD) method exhibited crystallite sizes of 22, 13.9, 9.3, and 8.15 nm, respectively. The obtained findings from atomic force microscopy (AFM) and scanning electron microscopy (SEM) analyses indicate a consistent trend whereby, as the concentration of Cu-doped material rises, there is a decrease in the average grain size. The transmittance and absorbance spectra were examined within the wavelength range of 300 to 1000 nm. The films generated by both approaches exhibit a significant level of light transmission throughout the visible spectrum. The bandgap energy of spin coating and CBD films decreases with increasing Cu-doped concentrations; the values were (3.88, 3.8, 3.68, and 3.63) eV and (3.8, 3.78, 3.66, and 3.55) eV, respectively. The electrical characteristics of the films include direct current (DC) electrical conductivity, which indicates the presence of two activation energies, Ea1 and Ea2. These activation energies exhibit an upward trend when the concentration of Cu doping is increased. The films were examined for their ability to detect carbon monoxide (CO) gas at a concentration of about 50 ppm at normal room temperature conditions. The sensitivity of the films to carbon monoxide (CO) gas was assessed at various time intervals and temperatures. The results indicated that the film generated using spin coating exhibited a notably high sensitivity at a temperature of 200 °C, while the film prepared using the chemical bath deposition (CBD) approach had heightened sensitivity at a temperature of 150 °C. Keywords: Spin coating, SnO2 thin films, CBD, AFM, XRD, gas sensor.
The corrosion inhibiting properties of the new furan derivative 5-(furan-2-ylmethylsulfonyl-4-phenyl-2,4- dihydro [1,2,4] triazole-3-thione in acidic solution (1.0 M HCl) were explored utilizing electrochemical, surface morphology (AFM), and quantum chemical calculations approaches. The novel furan derivative 5-(furan-2-ylmethylsulfonyl-4-phenyl-2,4- dihydro [1,2,4] triazole-3-thione shows with an inhibitory efficiency value of 99.4 percent at 150 ppm, carbon steel corrosion in acidic medium is effectively inhibited, according to the results. The influence of temperature on corrosion prevention was studied using adsorption parameters and activation thermodynamics. The novel furan derivative creates a protective layer over the metallic surfa
... Show MoreAbstract
Black paint laser peening (bPLP) technique is currently applied for many engineering materials , especially for aluminum alloys due to high improvement in fatigue life and strength . Constant and variable bending fatigue tests have been performed at RT and stress ratio R= -1 . The results of the present work observed that the significance of the surface work hardening which generated high negative residual stresses in bPLP specimens .The fatigue life improvement factor (FLIF) for bPLP constant fatigue behavior was from 2.543 to 3.3 compared to untreated fatigue and the increase in fatigue strength at 107 cycle was 21% . The bPLP cumulative fatigue life behav
... Show Moreoptical properties of pure poly(vinyl Alcohol) films and poly(vinyl Alcohol) doped with methyl red were study, different percentage prepared with constant thickness using casting technique. Absorption, Transmission spectra have been recorded in order to study the optical parameters such as absorption coefficient, energy gap, refractive index, Extinction coefficient and dispersion parameters were measured in the wavelength range (200-800)nm. This study reveals that the optical properties of PVA affect by increasing the impurity concentration.
Shadow removal is crucial for robot and machine vision as the accuracy of object detection is greatly influenced by the uncertainty and ambiguity of the visual scene. In this paper, we introduce a new algorithm for shadow detection and removal based on different shapes, orientations, and spatial extents of Gaussian equations. Here, the contrast information of the visual scene is utilized for shadow detection and removal through five consecutive processing stages. In the first stage, contrast filtering is performed to obtain the contrast information of the image. The second stage involves a normalization process that suppresses noise and generates a balanced intensity at a specific position compared to the neighboring intensit
... Show More<span>As a result of numerous applications and low installation costs, wireless sensor networks (WSNs) have expanded excessively. The main concern in the WSN environment is to lower energy consumption amidst nodes while preserving an acceptable level of service quality. Using multi-mobile sinks to reduce the nodes' energy consumption have been considered as an efficient strategy. In such networks, the dynamic network topology created by the sinks mobility makes it a challenging task to deliver the data to the sinks. Thus, in order to provide efficient data dissemination, the sensor nodes will have to readjust the routes to the current position of the mobile sinks. The route re-adjustment process could result in a significant m
... Show MoreIn this study NiO - CoO bimetallic catalysts are prepared with two Ni/Co ratios (70:30 and 80: 20) using the precipitation method of nitrate salts. The effects of Ni /Co ratio and preparation methods on the catalyst are analyzed by using different characterization techniques, i.e. atomic absorption (AA) , XRD, surface area and pore volume measurements according to the BET method . The results indicate that the best catalyst is the one containing the percentage of Ni :Co ( 70 : 30 ). Experiments indicate that the optimal conditions to prepare catalyst are stirring for three hours at a temperature of 60oC of the preparation , pH= (8-9) , calcination temperature at 400oC for two hours
... Show MoreA novel technique for nanoparticles with a chemical method and impact for resistance bacteria methicillin-resistant Staphylococcus aureus (MRSA), UV-visible analysis confirmed the by Fourier transform infrared spectroscopy (FT-IR) and Energy dispersive X-Ray (EDX), Scanning electron microscope (SEM) and X-ray diffraction pattern estimation antimicrobial excellent antibacterial activity against MRSA (with zone of inhibition of 11 ± 02 mm , 9 ± 01 mm,8 ± 03 mm and 7.5 ± 02 mm and 6.5 ± 02 mm) at different concentrations (0.5 ,0.25, 0.125, 0.0625, 0.03125) mg/ml while good activity was 16 ± 03 mm at 17 ± 02 mm zone at 0.25, 0.125 mg/mL, respectively. The increase in microorganism resistance to antibiotics a couple of have caused
... Show MoreAThe Bridge Maintenance Management System (BMMS) is an application system that uses existing data from a Bridge Management System database for monitoring and analysis of current bridges performance, as well as for estimating the current and future maintenance and rehabilitation needs of the bridges. In a transportation context, the maintenance management is described as a cost-effective process to operate, construct, and maintain physical money. This needs analytical tools to support the allocation of resources, materials, equipment, including personnel, and supplies. Therefore, Geographic Information System (GIS) can be considered as one tool to develop the road and bridge maintenanc