Preferred Language
Articles
/
1xefsY0BVTCNdQwCKBgJ
Using Nonparametric Procedure to Develop an OCMT Estimator for Big Data Linear Regression Model with Application Chemical Pollution in the Tigris River
...Show More Authors

Chemical pollution is a very important issue that people suffer from and it often affects the nature of health of society and the future of the health of future generations. Consequently, it must be considered in order to discover suitable models and find descriptions to predict the performance of it in the forthcoming years. Chemical pollution data in Iraq take a great scope and manifold sources and kinds, which brands it as Big Data that need to be studied using novel statistical methods. The research object on using Proposed Nonparametric Procedure NP Method to develop an (OCMT) test procedure to estimate parameters of linear regression model with large size of data (Big Data) which comprises many indicators associated with chemical pollution and profoundly have an effect on the life of the Iraqi people. The SICA estimator were chosen to analyze data and the MSE were used to make a comparison between the two methods and we determine that NP estimator is more effective than the other estimators under Big Data circumstances.

Crossref
View Publication
Publication Date
Sun Aug 30 2020
Journal Name
Journal Of Economics And Administrative Sciences
Proposing Robust IRWs Technique to Estimate Segmented Regression Model for the Bed load Transport of Tigris River with Change Point of Water Discharge Amount at Baghdad City
...Show More Authors

Segmented regression consists of several sections separated by different points of membership, showing the heterogeneity arising from the process of separating the segments within the research sample. This research is concerned with estimating the location of the change point between segments and estimating model parameters, and proposing a robust estimation method and compare it with some other methods that used in the segmented regression. One of the traditional methods (Muggeo method) has been used to find the maximum likelihood estimator in an iterative approach for the model and the change point as well. Moreover, a robust estimation method (IRW method) has used which depends on the use of the robust M-estimator technique in

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Oct 30 2022
Journal Name
Iraqi Journal Of Science
An Internet of Things Botnet Detection Model Using Regression Analysis and Linear Discrimination Analysis
...Show More Authors

The Internet of Things (IoT) has become a hot area of research in recent years due to the significant advancements in the semiconductor industry, wireless communication technologies, and the realization of its ability in numerous applications such as smart homes, health care, control systems, and military. Furthermore, IoT devices inefficient security has led to an increase cybersecurity risks such as IoT botnets, which have become a serious threat. To counter this threat there is a need to develop a model for detecting IoT botnets.

This paper's contribution is to formulate the IoT botnet detection problem and introduce multiple linear regression (MLR) for modelling IoT botnet features with discriminating capability and alleviatin

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Thu Sep 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Some Methods for Estimating Mixture of Linear Regression Models with Application
...Show More Authors

 A mixture model is used to model data that come from more than one component. In recent years, it became an effective tool in drawing inferences about the complex data that we might come across in real life. Moreover, it can represent a tremendous confirmatory tool in classification observations based on similarities amongst them. In this paper, several mixture regression-based methods were conducted under the assumption that the data come from a finite number of components. A comparison of these methods has been made according to their results in estimating component parameters. Also, observation membership has been inferred and assessed for these methods. The results showed that the flexible mixture model outperformed the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Sep 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Some Methods for Estimating Mixture of Linear Regression Models with Application
...Show More Authors

 A mixture model is used to model data that come from more than one component. In recent years, it became an effective tool in drawing inferences about the complex data that we might come across in real life. Moreover, it can represent a tremendous confirmatory tool in classification observations based on similarities amongst them. In this paper, several mixture regression-based methods were conducted under the assumption that the data come from a finite number of components. A comparison of these methods has been made according to their results in estimating component parameters. Also, observation membership has been inferred and assessed for these methods. The results showed that the flexible mixture model outperformed the others

... Show More
Crossref
Publication Date
Sat Dec 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Compare Estimate Methods of Parameter to Scheffʼe Mixture Model By Using Generalized Inverse and The Stepwise Regression procedure for Treatment Multicollinearity Problem
...Show More Authors

Mixture experiments are response variables based on the proportions of component for this mixture. In our research we will compare the scheffʼe model with the kronecker model for the mixture experiments, especially when the experimental area is restricted.

     Because of the experience of the mixture of high correlation problem and the problem of multicollinearity between the explanatory variables, which has an effect on the calculation of the Fisher information matrix of the regression model.

     to estimate the parameters of the mixture model, we used the (generalized inverse ) And the Stepwise Regression procedure

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Sep 01 2022
Journal Name
Iop Conference Series: Earth And Environmental Science
Heavy metals pollution profiles in Tigris River within Baghdad city
...Show More Authors
Abstract<p>The Tigris River is a major source of Iraq’s drinking and agricultural water supply. An increase in pollution by heavy metals can be a great threat to human and aquatic life. In this study, the pollution index (PI) and metal index (MI) were used to evaluate the status of the Tigris River in Baghdad City. Five stations were chosen to conduct the study. Five heavy metals were analyzed: iron (Fe), lead (Pb), nickel (Ni), zinc (Zn), and chromium (Cr). The result of PI was ranked between “No effect to moderately affected for Fe; Slightly Affected to Seriously Affected for Pb; no effect to moderately affected for Ni, and no effect to strongly affected for Cr; only Zn was in the No effec</p> ... Show More
View Publication
Scopus (8)
Crossref (3)
Scopus Crossref
Publication Date
Tue Mar 01 2011
Journal Name
Journal Of Economics And Administrative Sciences
Estimate the Nonparametric Regression Function Using Canonical Kernel
...Show More Authors

    This research aims to review the importance of estimating the nonparametric regression function using so-called Canonical Kernel which depends on re-scale the smoothing parameter, which has a large and important role in Kernel  and give the sound amount of smoothing .

We has been shown the importance of this method through the application of these concepts on real data refer to international exchange rates to the U.S. dollar against the Japanese yen for the period from January 2007 to March 2010. The results demonstrated preference the nonparametric estimator with Gaussian on the other nonparametric and parametric regression estima

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jan 16 2022
Journal Name
Iraqi Journal Of Science
Fuzzy Entropy in Adaptive Fuzzy Weighted Linear Regression Analysis with Application to Estimate Infant Mortality Rate
...Show More Authors

An adaptive fuzzy weighted linear regression model in which the output is based
on the position and entropy of quadruple fuzzy numbers had dealt with. The solution
of the adaptive models is established in terms of the iterative fuzzy least squares by
introducing a new suitable metric which takes into account the types of the influence
of different imprecisions. Furthermore, the applicability of the model is made by
attempting to estimate the fuzzy infant mortality rate in Iraq using a selective set of
inputs.

View Publication Preview PDF
Publication Date
Sun May 17 2020
Journal Name
Iraqi Journal Of Science
Bayesian Adaptive Bridge Regression for Ordinal Models with an Application
...Show More Authors

In this article, we propose a Bayesian Adaptive bridge regression for ordinal model. We developed a new hierarchical model for ordinal regression in the Bayesian adaptive bridge. We consider a fully Bayesian approach that yields a new algorithm with tractable full conditional posteriors. All of the results in real data and simulation application indicate that our method is effective and performs very good compared to other methods. We can also observe that the estimator parameters in our proposed method, compared with other methods, are very close to the true parameter values.

View Publication Preview PDF
Scopus Crossref
Publication Date
Thu Oct 20 2022
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Turbidity Changes in the Tigris River Using Satellite Data During the COVID-19 Related Lockdown
...Show More Authors

In the present study, an attempt has been made to study the change in water quality of the river in terms of turbidity during lockdown associated with COVID-19. Iraq announced the longest-ever lockdown on 25 March 2020 due to COVID-19 pandemic. 

In the absence of ground observations, remote sensing data was adopted, especially during this period. The change in the visible region's spectral reflectance of water in part of the river has been analyzed using the Landsat 8 OLI multispectral remote sensing data at Tigris River, Salah al-Din province (Bayji / near the refinery), Iraq. It was found that the green and red bands are most sensitive and can be used to estimate turbidity. Furthermore, the temporal variation in turbidity was a

... Show More
View Publication Preview PDF
Crossref