Preferred Language
Articles
/
1xefsY0BVTCNdQwCKBgJ
Using Nonparametric Procedure to Develop an OCMT Estimator for Big Data Linear Regression Model with Application Chemical Pollution in the Tigris River
...Show More Authors

Chemical pollution is a very important issue that people suffer from and it often affects the nature of health of society and the future of the health of future generations. Consequently, it must be considered in order to discover suitable models and find descriptions to predict the performance of it in the forthcoming years. Chemical pollution data in Iraq take a great scope and manifold sources and kinds, which brands it as Big Data that need to be studied using novel statistical methods. The research object on using Proposed Nonparametric Procedure NP Method to develop an (OCMT) test procedure to estimate parameters of linear regression model with large size of data (Big Data) which comprises many indicators associated with chemical pollution and profoundly have an effect on the life of the Iraqi people. The SICA estimator were chosen to analyze data and the MSE were used to make a comparison between the two methods and we determine that NP estimator is more effective than the other estimators under Big Data circumstances.

Crossref
View Publication
Publication Date
Fri Feb 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
A Comparison of Parameters Estimation Methods for the Negative Binomial Regression Model under Multicollinearity Problem by Using Simulation
...Show More Authors

This study discussed a biased estimator of the Negative Binomial Regression model known as (Liu Estimator), This estimate was used to reduce variance and overcome the problem Multicollinearity between explanatory variables, Some estimates were used such as Ridge Regression and Maximum Likelihood Estimators, This research aims at the theoretical comparisons between the new estimator (Liu Estimator) and the estimators

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Apr 30 2024
Journal Name
The Iraqi Geological Journal
Evaluation of Heavy Metals Pollution in the Sediments of Diyala River Lower Reaches, Eastern Iraq
...Show More Authors

 Investigating the heavy metals in soil is important to the life of humans and living organisms. Diyala River Lower Reaches was chosen due to the changes in environmental characteristics that took place in recent years. Twelve sediment samples were collected from four different sites. The physical, and chemical properties and the concentrations of nine heavy metals were indicated. The results showed that the average concentrations of arsenic, copper, chromium, cobalt, iron, manganese, nickel, lead, and zinc are 8.5, 45.7, 538.5, 12.2, 5.07, 991.7, 183.5, 16.07, 136.5 ppm, respectively. They reflect contamination with arsenic, chromium, and nickel, while they are free of lead, and zinc contamination, according to the Environmental P

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Mon Mar 31 2025
Journal Name
Iraqi Statisticians Journal
Hypothesis Testing for Non-Normal Multiple Compact Regression Model
...Show More Authors

Generalized multivariate transmuted Bessel distribution belongs to the family of probability distributions with a symmetric heavy tail. It is considered a mixed continuous probability distribution. It is the result of mixing the multivariate Gaussian mixture distribution with the generalized inverse normal distribution. On this basis, the paper will study a multiple compact regression model when the random error follows a generalized multivariate transmuted Bessel distribution. Assuming that the shape parameters are known, the parameters of the multiple compact regression model will be estimated using the maximum likelihood method and Bayesian approach depending on non-informative prior information. In addition, the Bayes factor was used

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Mar 01 2015
Journal Name
Journal Of Engineering
Multi-Sites Multi-Variables Forecasting Model for Hydrological Data using Genetic Algorithm Modeling
...Show More Authors

A two time step stochastic multi-variables multi-sites hydrological data forecasting model was developed and verified using a case study. The philosophy of this model is to use the cross-variables correlations, cross-sites correlations and the two steps time lag correlations simultaneously, for estimating the parameters of the model which then are modified using the mutation process of the genetic algorithm optimization model. The objective function that to be minimized is the Akiake test value. The case study is of four variables and three sites. The variables are the monthly air temperature, humidity, precipitation, and evaporation; the sites are Sulaimania, Chwarta, and Penjwin, which are located north Iraq. The model performance was

... Show More
View Publication Preview PDF
Publication Date
Tue Mar 30 2021
Journal Name
Baghdad Science Journal
Aquatic Oligochaeta (Annalida:Clitellata) as Bio Indication for Sediment Quality Assessment in Tigris River Within Baghdad City /Iraq
...Show More Authors

Aquatic Oligochaeta is an important group of Macroinvertebrates that has been very remarkable as bioindicators for assessing water pollution and determining its degree in water bodies. Hence, the idea of the current study aims at studying the impact of Baghdad effluents on the Tigris River by using oligochaetes community as bioindicators . For this purpose, four sites along the inside of Baghdad has been chosen. Site S1 has been located upstream, site S2 and S3 has been at midstream and site S4 at the downstream of the River.This investigation has used different types of biological indicators, including the  percentage of oligochaeta  within benthic invertebrates, which ranged from 49.2-51.28%. The highest percentage of the tubificid w

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
An improved neurogenetic model for recognition of 3D kinetic data of human extracted from the Vicon Robot system
...Show More Authors

These days, it is crucial to discern between different types of human behavior, and artificial intelligence techniques play a big part in that.  The characteristics of the feedforward artificial neural network (FANN) algorithm and the genetic algorithm have been combined to create an important working mechanism that aids in this field. The proposed system can be used for essential tasks in life, such as analysis, automation, control, recognition, and other tasks. Crossover and mutation are the two primary mechanisms used by the genetic algorithm in the proposed system to replace the back propagation process in ANN. While the feedforward artificial neural network technique is focused on input processing, this should be based on the proce

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Wed Sep 05 2007
Journal Name
Neural Network World
A canonical generic algorithm for likelihood estimator of first order moving average model parameter
...Show More Authors

The increasing availability of computing power in the past two decades has been use to develop new techniques for optimizing solution of estimation problem. Today's computational capacity and the widespread availability of computers have enabled development of new generation of intelligent computing techniques, such as our interest algorithm, this paper presents one of new class of stochastic search algorithm (known as Canonical Genetic' Algorithm ‘CGA’) for optimizing the maximum likelihood function strategy is composed of three main steps: recombination, mutation, and selection. The experimental design is based on simulating the CGA with different values of are compared with those of moment method. Based on MSE value obtained from bot

... Show More
Scopus (3)
Scopus
Publication Date
Fri Sep 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Semi Parametric Logistic Regression Model with the Outputs Representing Trapezoidal Intuitionistic Fuzzy Number
...Show More Authors

In this paper, the fuzzy logic and the trapezoidal fuzzy intuitionistic number were presented, as well as some properties of the trapezoidal fuzzy intuitionistic number and semi- parametric logistic regression model when using the trapezoidal fuzzy intuitionistic number. The output variable represents the dependent variable sometimes cannot be determined in only two cases (response, non-response)or (success, failure) and more than two responses, especially in medical studies; therefore so, use a semi parametric logistic regression model with the output variable (dependent variable) representing a trapezoidal fuzzy intuitionistic number.

the model was estimated on simulati

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Wed Mar 16 2022
Journal Name
Journal Of Educational And Psychological Researches
The Effectiveness of an Educational Program in Light Of Behavioral Cognitive Theory to Develop Efficient Response to Students Affected by Crises
...Show More Authors

The aim of this research is to construct an educational program in light of the theory of behavioral cognitive and its impact on the development of the efficient response to students affected by crises (centers of your right to education). To achieve the objectives of the research, two scales were developed by the researcher in addition to two equivalent hypotheses were formulated. The scale contains (26) items divided into five fields; for its validity and reliability were derived based on the measure of efficient response, an educational program based on the theory of behavioral cognition. The test and the educational program were applied to a sample of (60) students from the centers of your right to education, divided into experimenta

... Show More
View Publication Preview PDF
Publication Date
Fri Sep 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Semi parametric Estimators for Quantile Model via LASSO and SCAD with Missing Data
...Show More Authors

In this study, we made a comparison between LASSO & SCAD methods, which are two special methods for dealing with models in partial quantile regression. (Nadaraya & Watson Kernel) was used to estimate the non-parametric part ;in addition, the rule of thumb method was used to estimate the smoothing bandwidth (h). Penalty methods proved to be efficient in estimating the regression coefficients, but the SCAD method according to the mean squared error criterion (MSE) was the best after estimating the missing data using the mean imputation method

View Publication Preview PDF
Crossref