Doxycycline hyclate is an antibiotic drug with a broad‐spectrum activity against a variety of gram‐positive and gram‐negative bacteria and is frequently used as a pharmacological agent and as an effector molecule in an inducible gene expression system. A sensitive, reliable and fast spectrophotometric method for the determination of doxycycline hyclate in pure and pharmaceutical formulations has been developed using flow injection analysis (FIA) and batch procedures. The proposed method is based on the reaction between the chromogenic reagent (V4+) and doxycycline hyclate in a neutral medium, resulting in the formation of a yellow compound that shows maximum absorbance at 396 nm. In a batch procedure, the proposed method was validated over the concentration range of 1.0–80 μg mL−1 with a sampling frequency of 30/h, and commercial pharmaceutical samples were successfully determined. The proposed method was successfully adapted with an FIA system where the peak heights are proportionally connected to doxycycline hyclate over the concentration range of 25–400 μg mL−1 with a sampling frequency of 50/h. The limits of detection (LOD) and quantification (LOQ) were 0.9 and 10.44 μg mL−1 and 3.01 and 34.81 μg mL−1 for batch and FIA respectively. The samples were submitted to an HPLC analysis, and the outcomes demonstrated excellent agreement with the suggested procedures. The adopted FIA procedure allows fast monitoring of doxycycline hyclate in pharmaceutical formulations and it can be used for quality control purposes during the production processes of doxycycline hyclate.
The Cu(II) was found using a quick and uncomplicated procedure that involved reacting it with a freshly synthesized ligand to create an orange complex that had an absorbance peak of 481.5 nm in an acidic solution. The best conditions for the formation of the complex were studied from the concentration of the ligand, medium, the eff ect of the addition sequence, the eff ect of temperature, and the time of complex formation. The results obtained are scatter plot extending from 0.1–9 ppm and a linear range from 0.1–7 ppm. Relative standard deviation (RSD%) for n = 8 is less than 0.5, recovery % (R%) within acceptable values, correlation coeffi cient (r) equal 0.9986, coeffi cient of determination (r2) equal to 0.9973, and percentage capita
... Show MoreThe proposed method is sensitive, simple , fast for the determination of mebeverine hydrochloride in pure form or in pharmaceutical dosage . Using Homemade instrument fluorimeter continuous flow injection analyser with solid state laser (405 nm) as a source. Where it is based upon the fluorescence of fluorescein sodium salt and quenching effect of fluorescence by mebeverine in aqueous medium. The calibration graph was linear in the concentration range 0.05 to10 mMol.L-1 (r= 0.9629) with relative standard deviation (RSD%) for 1 mMol.L-1mebeverine solution was lower than 3% (n=6). Three pharmaceutical drugs were used as an application for the determination of mebeverine. A comparison was made between the newly developed method of analysis wit
... Show MoreNew simple and sensitive spectrophotometric methods for the determination of paracetamol in aqueous medium were developed. The first method is based on coupling of paracetamol with p-amino-2-hydroxy sodium benzoate (AHB) in the presence of sodium periodate, as oxidizing agent, to form a brownish-orange compound which shows a λmax at 470 nm. The molar absorptivity (εmax) of the colored product was found to be (3371) l. mole1. cm-1 and Sandel’s index 0.0449 μg. cm-2. The method follows Beer’s law in the concentration range of 12.5-500.0 μg of paracetamol in a final volume of 25 ml (0.5-20.0) μg. ml-1 with relative standard deviation percent (RSD%) ranged between 0.26-4.71% and accuracy, expressed by recovery percent, 95-106% for five
... Show MoreNew simple and sensitive spectrophotometric methods for the determination of paracetamol in aqueous medium were developed. The first method is based on coupling of paracetamol with p-amino-2-hydroxy sodium benzoate (AHB) in the presence of sodium periodate, as oxidizing agent, to form a brownish-orange compound which shows a λmax at 470 nm. The molar absorptivity (εmax) of the colored product was found to be (3371) l.mole1.cm-1 and Sandel’s index 0.0449 μg.cm-2. The method follows Beer’s law in the concentration range of 12.5-500.0 μg of paracetamol in a final volume of 25 ml (0.5-20.0) μg.ml-1 with relative standard deviation percent (R.S.D%) ranged between 0.26-4.71% and accuracy, expressed by recover
... Show MoreFour different spectrophotometric methods are used in this study for the determination of Sulfamethoxazole and sulfanilamide drugs in pharmaceutical compounds, synthetic samples, and in their pure forms. The work comprises four chapters which are shown in the following: Chapter One: Includes a brief for Ultraviolet-Visible (UV-VIS) Absorption spectroscopy, antibacterial drugs and sulfonamides with some methods for their determination. The chapter lists two methods for optimization; univariate method and multivariate method. The later includes different types, two of these were mentioned; simplex method and design of experiment method. Chapter Two: Includes reaction of the two studied drugs with sodium nitrite and hydrochloric acid for diazo
... Show MoreIsocratic high performance liquid chromatography on reversed phase a (150x 4.6 mm I.D), 5 ?m ?-Bondapak RP-8 column (with acidic mobile phase allow the separation of doxcycycline hydrochloride with low detection limit of 0.2 µg/ml detected by UV set at 226 nm. The method was validated for Doxycycline between 0.156- to 5 µg/ml. The concentration of doxycycline was assessed in two single dose randomized crossover studies with intervals of one week between two period. In sera of 20 adults healthy male volunteers with average age of (42 + 10) year, body weight 48-85 kg, body height of (160-185cm) after a single dose of doxycycline hydrochoride 100 mg in form of capsules were orally administrated for both formulations. The blood sa
... Show MoreThe present study combines UV-Vis spectrophotometry and dispersive liquid-liquid microextraction (DLLME) for the preconcentration and determination of trace level clidinium bromide (Clid) in pharmaceutical preparation and real samples. The method is based on ion-pair formation between Clid and bromocresol green in aqueous solution using citrate buffer (pH = 3). The colored product was first extracted using a mixture of 800 µL acetonitrile and 300 µL chloroform solvents. Then, a spectrophotometric measurement of sediment phase was performed at λ = 420 nm. The important parameters affecting the efficiency of DLLME were optimized. Under the optimum conditions, the calibration graphs of standard -1 (Std.), drug, urine and serum were ranged
... Show MoreFusidic acid (FA) is a well-known pharmaceutical antibiotic used to treat dermal infections. This experiment aimed for developing a standardized HPLC protocol to determine the accurate concentration of fusidic acid in both non-ionic and cationic nano-emulsion based gels. For this purpose, a simple, precise, accurate approach was developed. A column with reversed-phase C18 (250 mm x 4.6 mm ID x 5 m) was utilized for the separation process. The main constituents of the HPLC mobile phase were composed of water: acetonitrile (1: 4); adjusted at pH 3.3. The flow rate was 1.0 mL/minute. The optimized wavelength was selected at 235 nm. This approach achieved strong linearity for alcoholic solutions of FA when loaded at a serial concentrati
... Show More