The present study utilised date palm fibre (DPF) waste residues to adsorb Congo red (CR) dye from aqueous solutions. The features of the adsorbent, such as its surface shape, pore size, and chemical properties, were assessed with X-ray diffraction (XRD), BET, Fourier-transform infrared (FTIR), X-ray fluorescence (XRF), and field emission scanning electron microscope (FESEM). The current study employed the batch system to investigate the ideal pH to adsorb the CR dye and found that acidic pH decolourised the dye best. Extending the dye-DPF waste mixing period at 25°C reportedly removed more dye. Consequently, the influence of the starting dye and DPF waste quantity on dye removal was explored in this study. At 5 g/L dye concentration, 48% dye removal was achieved, whereas at low dye concentrations, only 40% of the dye was removed. The current study also evaluated the DPF particle size created for dye adsorption, yielding a 66% optimal powder size removal. The heat impact assessment performed in this study indicated that increased temperature affected the amount of dye eliminated from aqueous solutions, where a 72% removal was recorded at 45°C. The pseudo-first- and pseudo-second-order models were utilised to predict the maximum CR dye adsorption with DPF waste. Resultantly, the Langmuir-Freundlich experimental DPF waste CR adsorption documented pseudo-second-order kinetics. In a fixed bed reactor, the DPF waste has been reported to remove CR dye constantly. Consequently, several factors affecting the removal process, including the effects of primary dye, the flow rate of the liquid inside the column, the depth of the filling inside the column, and flow rate were assessed. The results were simulated in the COMSOL® program and compared to practical experiments, which yielded a 99% match. Conclusively, DPF waste could remove several colours from wastewater via active removal.
Three types of zeolite A were prepared from Iraqi kaoline which are 3A, 4A and 5A by ion exchange method .They were characterized by XRD and atomic absorption techniques .They were used as adsorbents to examine their applicability for H2S adsorption .The adsorption process was performed in a static form and constant volume system which constructed from stainless steel .The effect of zeolite type and temperature on the adsorption properties of H2S at -5 , 25 and 55 oC was studied .The zeolite type 5A has the highest adsorption value (79.384 µmol/g ) and the three types may be arranged in a sequence toward H2S adsorption as 5 A> 4A>3A .The amount of H2S adsorbed increased as temperature decreased from 55 to -5 for all samples. Langmuir , Fre
... Show MoreThe adsorption of copper ions onto produced activated carbon from banana peels (with particle size 250 µm) in a single component system with applying magnetic field has been studied using fixed bed adsorber. The fixed bed breakthrough curves for the copper ions were investigated. The adsorption capacity for Cu (II) was investigated. It was found that 1) the exposure distance (E.D) and strength of magnetic field (B), affected the degree of adsorption; and 2) experiments showed that removal of Cu ions and accumulative adsorption capacity of adsorbent increase as the exposure distance and strength of magnetic field increase.
In this paper, a mathematical model for the oxidative desulfurization of kerosene had been developed. The mathematical model and simulation process is a very important process due to it provides a better understanding of a real process. The mathematical model in this study was based on experimental results which were taken from literature to calculate the optimal kinetic parameters where simulation and optimization were conducted using gPROMS software. The optimal kinetic parameters were Activation energy 18.63958 kJ/mol, Pre-exponential factor 2201.34 (wt)-0.76636. min-1 and the reaction order 1.76636. These optimal kinetic parameters were used to find the optimal reaction conditions which
... Show MoreThe adsorption process of reactive blue 49 (RB49) dye and reactive red 195 (RR195) dye from an aqueous solutions was explored using a novel adsorbent produced from the sunflower husks encapsulated with copper oxide nanoparticle (CSFH). Primarily, the features of a CSFH, such as surface morphology, functional groups, and structure, were characterized. It was determined that coating the sunflower husks with copper oxide nanoparticles greatly improved the surface and structural properties related to the adsorption capacity. The adsorption process was successful, with a removal efficiency of 97% for RB49 and 98% for RR195 under optimal operating conditions, contact time of 180 min, pH of 7, agitation speed of 150 rpm, initial dye concentration
... Show MoreThis work is aiming to study and compare the removal of lead (II) from simulated wastewater by activated carbon and bentonite as adsorbents with particle size of 0.32-0.5 mm. A mathematical model was applied to describe the mass transfer kinetic.
The batch experiments were carried out to determine the adsorption isotherm constants for each adsorbent, and five isotherm models were tested to choose the best fit model for the experimental data. The pore, surface diffusion coefficients and mass transfer coefficient were found by fitting the experimental data to a theoretical model. Partial differential equations were used to describe the adsorption in the bulk and solid phases. These equations were simplified and the
... Show MoreHeavy metal ion removal from industrial wastewater treatment systems is still difficult because it contains organic contaminants. In this study, functional composite hydrogels with photo Fenton reaction activity were used to decompose organic contaminants. Fe3O4 Nanoparticle, chitosan (CS), and other materials make up the hydrogel. There are different factors that affected Photo-Fenton activity including (pH, H2O2 conc., temp., and exposure period). Atomic force microscopy was used to examine the morphology of the composite and its average diameter (AFM). After 60 minutes of exposure to UV radiation, CS/ Fe3O4 hydrogel composite had degraded methylene blue (M.B.)
... Show MoreThis research includes a study of the ability of Iraqi porcelanite rocks powder to remove the basic Safranine dye from its aqueous process by adsorption. The experiments were carried out at 298Kelvin in order to determine the effect of the starting concentration for Safranin dye, mixing time, pH, and the effect of ionic Strength. The good conditions were perfect for safranine dye adsorption was performed when0.0200g from that adsorbed particles and the removal max percentage was found be 96.86% at 9 mg/L , 20 minutes adsorption time and at PH=8 and in 298 K. The isothermal equilibrum stoichiometric adsorption confirmed, the process data were examined by Langmuir, Freundlich and Temkin adsorption equations at different temperatures
... Show MoreThis study investigates data set as satellite images of type multispectral Landsat-7, which are observed for AL_Nasiriya city, it is located in southern of Iraq, and situated along the banks of the Euphrates River. These raw data are thermal bands of satellite images, they are taken as thermal images. These images are processed and examined using ENVI 5.3 program. Consequently, the emitted Hydrocarbon is extracted, and the black body algorithm is employed. As well as, the raster calculations are performed using ArcGIS, where gas and oil features are sorted. The results are estimate and determine the oil and gas fields in the city. This study uncovers, and estimates several unexplored oil and gas fields. Whereas,
... Show MoreIn this paper we investigate how do the laminated composites behave mechanically when subjected to external stresses, when reinforced with continuous fibers (mat) and discontinuous fibers (chopped) and to find the effect of the fiber type on the mechanical properties. Laminated composites consisting of wood- wood and Ph-F resin as suitable adhesive were reinforced with different fibers(jute, glass, and carbon).However, two different methods of reinforcement namely, mat and chopped fibers were utilized. The mechanical properties such as (impact strength, compression strength, tensile strength, shear strength, bending strength, and elasticity modulus) of laminated composites were measured. Fibers reinforced laminated composite
... Show MoreBaghdad city has been faced numerous issues related to freshwater environment deteriorations due to many reasons, mainly was the discharge of wastewater without adequate treatment. Al-Rustamiya Wastewater Treatment Plant (WWTP) have been constructed among many plants in Baghdad city to reduce the amount of wastewater discharged into natural environment and its subsequent adverse effects. This study was conducted to evaluate the performance of the plant which consist of a conventional activated sludge (CAS) and sequencing batch reactors (SBR) systems as secondary treatment units and its ability to meet Iraqi specifications. A reliability level determination and analysis also were conducted to find the plant's stability an
... Show More