Krawtchouk polynomials (KPs) and their moments are promising techniques for applications of information theory, coding theory, and signal processing. This is due to the special capabilities of KPs in feature extraction and classification processes. The main challenge in existing KPs recurrence algorithms is that of numerical errors, which occur during the computation of the coefficients in large polynomial sizes, particularly when the KP parameter (p) values deviate away from 0.5 to 0 and 1. To this end, this paper proposes a new recurrence relation in order to compute the coefficients of KPs in high orders. In particular, this paper discusses the development of a new algorithm and presents a new mathematical model for computing the initial value of the KP parameter. In addition, a new diagonal recurrence relation is introduced and used in the proposed algorithm. The diagonal recurrence algorithm was derived from the existing n direction and x direction recurrence algorithms. The diagonal and existing recurrence algorithms were subsequently exploited to compute the KP coefficients. First, the KP coefficients were computed for one partition after dividing the KP plane into four. To compute the KP coefficients in the other partitions, the symmetry relations were exploited. The performance evaluation of the proposed recurrence algorithm was determined through different comparisons which were carried out in state-of-the-art works in terms of reconstruction error, polynomial size, and computation cost. The obtained results indicate that the proposed algorithm is reliable and computes lesser coefficients when compared to the existing algorithms across wide ranges of parameter values of p and polynomial sizes N. The results also show that the improvement ratio of the computed coefficients ranges from 18.64% to 81.55% in comparison to the existing algorithms. Besides this, the proposed algorithm can generate polynomials of an order ∼8.5 times larger than those generated using state-of-the-art algorithms.
To perform a secure evaluation of Indoor Design data, the research introduces a Cyber-Neutrosophic Model, which utilizes AES-256 encryption, Role-Based Access Control, and real-time anomaly detection. It measures the percentage of unpredictability, insecurity, and variance present within model features. Also, it provides reliable data security. Similar features have been identified between the final results of the study, corresponding to the Cyber-Neutrosophic Model analysis, and the cybersecurity layer helped mitigate attacks. It is worth noting that Anomaly Detection successfully achieved response times of less than 2.5 seconds, demonstrating that the model can maintain its integrity while providing privacy. Using neutrosophic sim
... Show MorePseudomonas aeruginosa is emerging opportunistic clinical pathogens. Clinical isolates of P. aeruginosaresist wide spectrum of antibiotics and form biofilm. The comparison study between clinical and environmental of P. aeruginosa in terms of biofilm formation and antibiotic resistance is very scanty. Thus, in current study microtiter plate technique was used to measure the biofilm formation by several clinical and environmental isolates. Moreover, the antibiotic susceptibility of these bacteria was evaluated by VITIK 2 techniques. The relationship between the antibiotic susceptibility and biofilm formation was evaluated for clinical and environmental isolates. Clinical and environm
... Show MoreThe present study aims to get experimentally a deeper understanding of the efficiency of carbon fiber-reinforced polymer (CFRP) sheets applied to improve the torsional behavior of L-shaped reinforced concrete spandrel beams in which their ledges were loaded in two stages under monotonic loading. An experimental program was conducted on spandrel beams considering different key parameters including the cross-sectional aspect ratio (
The orbital motion and longitude for some Jupiter's satellites (Amaletha, Europa, Ganymede and Callisto) were calculated from two different locations Iraq and Syria. A program was designed, the input parameters were the desired year, month, day and the longitude of the location, the output parameters results were applied in form of a file, and this file includes the longitude, orbital motion, and local time of these satellites. A specific date 1-10-2013 was taken, the results of longitude was (20-336) º and orbital motion was (92-331) º for both Iraq and Syria location with observing time (05:24:14-15:18:10) for Iraq and (04:56:33-14:50:30) for Syria. The difference in time between the two locations was constant (00:45:00), these results
... Show MoreThis paper deals with a Twin Rotor Aerodynamic System (TRAS). It is a Multi-Input Multi-Output (MIMO) system with high crosscoupling between its two channels. It proposes a hybrid design procedure that combines frequency response and root locus approaches. The proposed controller is designated as PID-Lead Compensator (PIDLC); the PID controller was designed in previous work using frequency response design specifications, while the lead compensator is proposed in this paper and is designed using the root locus method. A general explicit formula for angle computations in any of the four quadrants is also given. The lead compensator is designed by shifting the dominant closed-loop poles slightly to the left in the s-plane. This has the effect
... Show MoreThe research deals with Iraq's position of the Lebanese civil war and the Efforts made by Iraq in order to stop the bleeding of this war, the research also deals with the nature of regime in Lebanon and the developments that preceded the war and the positions of the internal and external competing forces, as weu as handling the Iraqi Syrian disagreement and it's impaet on the situation of Lebanon and the war developments.
The research focused on the Iraq's position towards the externd proposed solutions to solve the Lebanese civil war.