Structural buildings consist of concrete and steel, and these buildings have confronted many challenges from various aggressive environments against the materials manufactured from them. It contains high water levels and buildings whose concrete cover may be damaged and thus lead to the deterioration and corrosion of steel. It was important to have an alternative to steel, such as the glass fiber reinforced polymer (GFRP), which is distinguished by its great effectiveness in resisting corrosion, as well as its strong tensile resistance. Still, one of its drawbacks is that it has a low modulus of elasticity. This research article aims to conduct a numerical study using the nonlinear finite element ABAQUS program on eight beam models with various parameters such as stirrup spacing, compressive strength, reinforcement layer, and type of bar reinforcement under four-point bending. The result shows that the ultimate load capacity of the GFRP beam is higher than that of a beam reinforced with steel and the number and width of cracks are greater in the GFRP-reinforced beam than in the steel-reinforced beam. In general, the serviceability reflected by cracks and deflection is lower in GFRP-reinforced beams than in steel-reinforced beams with higher serviceability. The results, on either hand, showed the expected behavior of GFRP, which is linear elastic to the failure stage. These beams are divided into four groups of beams with different variables studied to understand GFRP bars’ behavior under static loading. The variables taken in this study are the spacing between the stirrups, the compressive strength of concrete, the effect of the number of layers of reinforcement, and the type of reinforcement bar.
In this paper, a discretization of a three-dimensional fractional-order prey-predator model has been investigated with Holling type III functional response. All its fixed points are determined; also, their local stability is investigated. We extend the discretized system to an optimal control problem to get the optimal harvesting amount. For this, the discrete-time Pontryagin’s maximum principle is used. Finally, numerical simulation results are given to confirm the theoretical outputs as well as to solve the optimality problem.
Due to the vast using of digital images and the fast evolution in computer science and especially the using of images in the social network.This lead to focus on securing these images and protect it against attackers, many techniques are proposed to achieve this goal. In this paper we proposed a new chaotic method to enhance AES (Advanced Encryption Standards) by eliminating Mix-Columns transformation to reduce time consuming and using palmprint biometric and Lorenz chaotic system to enhance authentication and security of the image, by using chaotic system that adds more sensitivity to the encryption system and authentication for the system.
In this paper, a discrete SIS epidemic model with immigrant and treatment effects is proposed. Stability analysis of the endemic equilibria and disease-free is presented. Numerical simulations are conformed the theoretical results, and it is illustrated how the immigrants, as well as treatment effects, change current model behavior
The proliferation of many editing programs based on artificial intelligence techniques has contributed to the emergence of deepfake technology. Deepfakes are committed to fabricating and falsifying facts by making a person do actions or say words that he never did or said. So that developing an algorithm for deepfakes detection is very important to discriminate real from fake media. Convolutional neural networks (CNNs) are among the most complex classifiers, but choosing the nature of the data fed to these networks is extremely important. For this reason, we capture fine texture details of input data frames using 16 Gabor filters indifferent directions and then feed them to a binary CNN classifier instead of using the red-green-blue
... Show MoreIn this research, the preparation of bidentate Schiff base was carried out via the condensation reaction of both the salicylaldehyde with 1-phenyl-2,3-dimethyl-4-amino-5-oxo-pyrazole to form the ligand (L). The mentioned ligand was used to prepare complexes with transition metal ions Mn(II), Co(II), Ni(II), Cu(II) and Zn(II). The resulting complexes were separated and characterized by FTIR and UV-Vis spectroscopic technique. Elemental analysis for Carbon, Hydrogen and Nitrogen elements, electronic spectra of the ligand and complexes were obtained, and the magnetic susceptibility tests were also achieved to measure the dipole moments. The molar conductivities were also measured and determination of chlorine content in the complexes and
... Show MoreCUPPER(||)AND MERCURY (||)Complexes WITH SCHIFF BASE LIGAND FROM BENZIDIN WITH ISATIN AND BENZOIN:SYNTHESIS,SPECTRAL CHARACTERIZATION, THERMAL STUDIES AND BIOLOGICAL ACTIVITIES
Our research comes to shed light on Iraqi literature as literature that arose in special circumstances alongside foreign literature. Using comparative research methods, we chose to highlight two distinguished writers, who have their mark in the world of literature. The first is the Iraqi writer Maysaloun Hadi, who is considered an icon of Iraqi feminist literature, and the second is the French writer Le Clézieu, who won the Nobel in 2008. We will see through the research how the two authors expressed their views of modernity and urbanism. And how each of them separately portrayed the psychological and moral projections that formed the essence of man today.
Résumé
Notre recherche abord un des points inc
... Show MoreAbstractIn the field of construction materials the glass reinforced mortar and Styrene Butadiene mortar are modern composite materials. This study experimentally investigated the effect of addition of randomly dispersed glass fibers and layered glass fibers on density and compressive strength of mortar with and without the presence of Styrene Butadiene Rubber (SBR). Mixtures of 1:2 cement/sand ratio and 0.5 water/cement ratio were prepared for making mortar. The glass fibers were added by two manners, layers and random with weight percentages of (0.54, 0.76, 1.1 and 1.42). The specimens were divided into two series: glass-fiber reinforced mortar without SBR and glass-fiber reinforced mortar with 7% SBR of mixture water. All s
... Show More
In this work we study the influence of the laser pulse energy and ablation time on the aluminum nanoparticles productivity during nanosecond laser ablation of bulk aluminum immersed in liquid.
Aluminum nanoparticles were synthesized by pulsed laser ablation of Al targets in ethanol for 3-8 minutes using the 1064 nm wavelength of a Nd:YAG laser with energies of 300-500 mJ per pulse.The laser energy was varied between 300 and 500 mJ/pulse, whereas the ablation time was set to 5 minutes. UV-Visible absorption spectra was used for the characterization and comparison of products.