Educational services in Iraq face many problems that have reduced the efficiency of the educational process, as a result of the difficult conditions experienced by educational services in Iraq. This led to the accumulation of these problems and their exacerbation significantly over the years, as there was no fundamental solution to these problems. The study proposes a planning method for managing the educational system in Iraq, especially for the primary and secondary levels, where these negative phenomena are very prominent, especially the deficit in school buildings and the phenomenon of overcrowding in classrooms. In order to reduce the deficit in school buildings and overcrowding in classrooms, a proposal will be presented to change the existing educational system based on the classification of students on the school years (6-3-3) by changing the distribution of students over academic years according to a system for managing educational services for primary and secondary education. (4-4-4), and the comparison between the reality of the situation of the student rate per class and the need for school buildings, where the study showed promising results to reduce these negative phenomena if the proposed educational system (4-4-4) was applied to the primary and secondary levels in Iraq By reducing the shortfall in school buildings by (45%), which is reflected in reducing the costs needed to build schools to fill this shortfall by (46%), in addition to reducing the rate (student/class) within the approved planning standards for educational services.
This research aims to improve the radiation shielding properties of polymer-based materials by mixing PVC with locally available building materials. Specifically, two key parameters of fast neutron attenuation (removal cross-section and half-value layer) were studied for composite materials comprising PVC reinforced with common building materials (cement, sand, gypsum and marble) in different proportions (10%, 30% and 50% by weight). To assess their effectiveness as protection against fast neutrons, the macroscopic neutron cross-section was calculated for each composite. Results show that neutron cross-section values are significantly affected by the reinforcement ratios, and that the composite material PVC + 50% gypsum is an effect
... Show MoreModified asphalt is considered one of the alternatives to address the problems of deficiencies in traditional asphalt concrete, as modified asphalt addresses many of the issues that appear on the pavement layers in asphalt concrete, resulting from heavy traffic and vehicles loaded with loads that exceed the design loads and the large fluctuations in the daily and seasonal temperatures of asphalt concrete. The current study examined the role of polyphosphoric acid (PPA) as a modified material for virgin asphalt when it was added in different proportions (1%, 2%, 3%, 4%) of the asphalt weight. The experimental program includes the volumetric characteristics associated with the Marshall test, the physical properties, and th
... Show MoreSolar photovoltaic (PV) system has emerged as one of the most promising technology to generate clean energy. In this work, the performance of monocrystalline silicon photovoltaic module is studied through observing the effect of necessary parameters: solar irradiation and ambient temperature. The single diode model with series resistors is selected to find the characterization of current-voltage (I-V) and power-voltage (P-V) curves by determining the values of five parameters ( ). This model shows a high accuracy in modeling the solar PV module under various weather conditions. The modeling is simulated via using MATLAB/Simulink software. The performance of the selected solar PV module is tested experimentally for differ
... Show MoreIn the present study, a powder mixture of elements Ti and Ni was mechanically alloyed in a high energy ball mill. Microstructure of the nanosized amorphous milled product in different stages of milling has been characterized by X- ray diffraction, scanning electron microscopy and differential thermal analysis. We found that time of mechanical alloying is more significant to convert all crystalline structure to the amorphous phase. Nanocrystalline phase was achieved as a result of the mechanical alloying process. The results also indicates that the phase transformation and the grain size occurs in these alloys are controlled by ball milling time
Objectives: To evaluate the incidence of adhesions
induced intestinal obstruction after explorative laparotomy
due to bullet/shell injury in Al-Kindi teaching
hospital/Baghdad.
Results: Thirty-six out of the 76 cases with adhesions
induced intestinal obstruction (A.I.I.O.) had history of
laparotomy for penetrating missile injury, 26 of them were
explored as a method of management of A.I.I.O. with
mean age (22 for those explored, ٣٧ for those treated
conservatively), 16 of them presented within a year or less
from the previous surgery.
Methods: Comparative interventional prospective study of
cases with adhesions induced intestinal obstruction
admitted to the surgical wards in Al-Kindi teaching
h
In this work, the spectra of plasma glow produced by Nd:YAG laser operated at 1.064 μm on Al-Mg alloys with same molar ratio samples in air were analyzed by comparing the atomic lines of aluminum and magnesium with that of strong standard lines. The effect of laser energies on spectral lines, produced by laser ablation, were investigated using optical spectroscopy, the electron density was measured utilizing the Stark broadening of magnesium-aluminum lines and the electron temperature was calculated from the standard Boltzmann plot method. The results that show the electron temperature increases in magnesium and aluminum targets but decreases in magnesium: aluminum alloy target, also show the electron density increase all the aluminum,
... Show MoreTerrestrial isopods play an important role in the biodegradation of many wastes which gives agreat importance in the nutrient cycles and ecosystem services , therefore this paper aims to use species
The parameters of resistance spot welding (RSW) performed on low strength commercial aluminum sheets are investigated experimentally, the performance requirements and weldability issues were driven the choice of a specific aluminum alloy that was AA1050. RSW aluminum alloys has a major problem of inconsistent quality from weld to weld comparing with welding steel
alloys sheet, due to the higher thermal conductivity, higher thermal expansion, narrow plastic temperature range, and lower electrical resistivity. Much effort has been devoted to the study of describing the relation between the parameters of the process (welding current, welding time, and electrode force) and weld strength. Shear-tensile strength tests were performed to ind