Preferred Language
Articles
/
1hdaq44BVTCNdQwCQlbp
E-learning in the Cloud Computing Environment: Features, Architecture, Challenges and Solutions
...Show More Authors

The need to constantly and consistently improve the quality and quantity of the educational system is essential. E-learning has emerged from the rapid cycle of change and the expansion of new technologies. Advances in information technology have increased network bandwidth, data access speed, and reduced data storage costs. In recent years, the implementation of cloud computing in educational settings has garnered the interest of major companies, leading to substantial investments in this area. Cloud computing improves engineering education by providing an environment that can be accessed from anywhere and allowing access to educational resources on demand. Cloud computing is a term used to describe the provision of hosting services on the Internet. It is predicted to be the next generation of information technology architecture and offers great potential to enhance productivity and reduce costs. Cloud service providers offer their processing and memory resources to users. By paying for the use of these resources, users can access them for their calculations and processing anytime and anywhere. Cloud computing provides the ability to increase productivity, save information technology resources, and enhance computing power, converting processing power into a tool with constant access capabilities. The use of cloud computing in a system that supports remote education has its own set of characteristics and requires a unique strategy. Students can access a wide variety of instructional engineering materials at any time and from any location, thanks to cloud computing. Additionally, they can share their materials with other community members. The use of cloud computing in e-learning offers several advantages, such as unlimited computing resources, high scalability, and reduced costs associated with e-learning. An improvement in the quality of teaching and learning is achieved through the use of flexible cloud computing, which offers a variety of resources for educators and students. In light of this, the current research presents cloud computing technology as a suitable and superior option for e-learning systems.

Scopus Clarivate Crossref
View Publication
Publication Date
Tue Aug 15 2023
Journal Name
Journal Of Economics And Administrative Sciences
Machine Learning Techniques for Analyzing Survival Data of Breast Cancer Patients in Baghdad
...Show More Authors

The Machine learning methods, which are one of the most important branches of promising artificial intelligence, have great importance in all sciences such as engineering, medical, and also recently involved widely in statistical sciences and its various branches, including analysis of survival, as it can be considered a new branch used to estimate the survival and was parallel with parametric, nonparametric and semi-parametric methods that are widely used to estimate survival in statistical research. In this paper, the estimate of survival based on medical images of patients with breast cancer who receive their treatment in Iraqi hospitals was discussed. Three algorithms for feature extraction were explained: The first principal compone

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Mar 02 2023
Journal Name
Applied Sciences
Machine Learning Techniques to Detect a DDoS Attack in SDN: A Systematic Review
...Show More Authors

The recent advancements in security approaches have significantly increased the ability to identify and mitigate any type of threat or attack in any network infrastructure, such as a software-defined network (SDN), and protect the internet security architecture against a variety of threats or attacks. Machine learning (ML) and deep learning (DL) are among the most popular techniques for preventing distributed denial-of-service (DDoS) attacks on any kind of network. The objective of this systematic review is to identify, evaluate, and discuss new efforts on ML/DL-based DDoS attack detection strategies in SDN networks. To reach our objective, we conducted a systematic review in which we looked for publications that used ML/DL approach

... Show More
View Publication Preview PDF
Scopus (91)
Crossref (83)
Scopus Clarivate Crossref
Publication Date
Tue May 16 2023
Journal Name
Journal Of Engineering
Natural Convection Heat Transfer from a Plane Wall to Thermally Stratified Environment
...Show More Authors

The effect of linear thermal stratification in stable stationary ambient fluid on free convective flow of a viscous incompressible fluid along a plane wall is numerically investigated in the present work. The governing equations of continuity, momentum and energy are solved numerically using finite difference method with Alternating Direct implicit Scheme. The velocity, temperature distributions
and the Nusselt number are discussed numerically for various values of physical parameters and presented through graphs. ANSYS program also used to solve the problem. The results show that the effect of stratification parameter is marginalized with the increase in Prandtl number, and the increase in Grashof number does not practically vary the

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Mar 01 2022
Journal Name
Iraqi Journal Of Applied Physics
Fabrication of Solid Random Gain Media in Visible Region From Rhodamine Dye Solutions Containing Highly-Pure Titanium Dioxide Nanoparticles
...Show More Authors

In this work, solid random gain media were fabricated from laser dye solutions containing nanoparticles as scattering centers. Two different rhodamine dyes (123 and 6G) were used to host the highly-pure titanium dioxide nanoparticles to form the random gain media. The spectroscopic characteristics (mainly fluorescence) of these media were determined and studied. These random gain media showed laser emission in the visible region of electromagnetic spectrum. Fluorescence characteristics can be controlled to few nanometers by adjusting the characteristics of the host and nanoparticles as well as the preparation conditions of the samples. Emission of narrow linewidth (3nm) and high intensity in the visible region (533-537nm) was obtained.

View Publication Preview PDF
Publication Date
Tue Mar 01 2022
Journal Name
Iraqi Journal Of Applied Physics
Fabrication of Solid Random Gain Media in Visible Region from Rhodamine Dye Solutions Containing Highly-Pure Titanium Dioxide Nanoparticles
...Show More Authors

In this work, solid random gain media were fabricated from laser dye solutions containing nanoparticles as scattering centers. Two different rhodamine dyes (123 and 6G) were used to host the highly-pure titanium dioxide nanoparticles to form the random gain media. The spectroscopic characteristics (mainly fluorescence) of these media were determined and studied. These random gain media showed laser emission in the visible region of electromagnetic spectrum. Fluorescence characteristics can be controlled to few nanometers by adjusting the characteristics of the host and nanoparticles as well as the preparation conditions of the samples. Emission of narrow linewidth (3nm) and high intensity in the visible region (533-537nm) was obtained.

View Publication Preview PDF
Publication Date
Sat Jun 06 2020
Journal Name
Journal Of The College Of Education For Women
Image classification with Deep Convolutional Neural Network Using Tensorflow and Transfer of Learning
...Show More Authors

The deep learning algorithm has recently achieved a lot of success, especially in the field of computer vision. This research aims to describe the classification method applied to the dataset of multiple types of images (Synthetic Aperture Radar (SAR) images and non-SAR images). In such a classification, transfer learning was used followed by fine-tuning methods. Besides, pre-trained architectures were used on the known image database ImageNet. The model VGG16 was indeed used as a feature extractor and a new classifier was trained based on extracted features.The input data mainly focused on the dataset consist of five classes including the SAR images class (houses) and the non-SAR images classes (Cats, Dogs, Horses, and Humans). The Conv

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Journal Of Engineering
Deep Learning-Based Segmentation and Classification Techniques for Brain Tumor MRI: A Review
...Show More Authors

Early detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Thu Feb 07 2019
Journal Name
Journal Of The College Of Education For Women
Build and Implemented Learning Package for Prolog Programming Language Using Visual Basic.Net 2010
...Show More Authors

E-Learning packages are content and instructional methods delivered on a computer
(whether on the Internet, or an intranet), and designed to build knowledge and skills related to
individual or organizational goals. This definition addresses: The what: Training delivered
in digital form. The how: By content and instructional methods, to help learn the content.
The why: Improve organizational performance by building job-relevant knowledge and
skills in workers.
This paper has been designed and implemented a learning package for Prolog Programming
Language. This is done by using Visual Basic.Net programming language 2010 in
conjunction with the Microsoft Office Access 2007. Also this package introduces several
fac

... Show More
View Publication Preview PDF
Publication Date
Sun Nov 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Face Recognition and Emotion Recognition from Facial Expression Using Deep Learning Neural Network
...Show More Authors
Abstract<p>Face recognition, emotion recognition represent the important bases for the human machine interaction. To recognize the person’s emotion and face, different algorithms are developed and tested. In this paper, an enhancement face and emotion recognition algorithm is implemented based on deep learning neural networks. Universal database and personal image had been used to test the proposed algorithm. Python language programming had been used to implement the proposed algorithm.</p>
View Publication
Scopus (8)
Crossref (2)
Scopus Crossref
Publication Date
Wed May 07 2025
Journal Name
Journal Mustansiriyah Of Sports Science
The Impact of an Educational Curriculum according to the Five-year Learning Cycle on Some Offensive Skills in Basketball for Female Students
...Show More Authors

Modern trends have appeared recently in educational thought that call for the achievement of the outcomes of the educational process. Some of these trends are the development of individual thinking skills, considering the individual differences, and learning basic skills. The five-year learning cycle is one of these models. It is called as five-year learning cycle because it passes through five stages. These five stages are: (operate - discover - clarify - expand – Evaluate), which make the learner as the main axis for activating thinking processes. This can be done by organizing study materials through research, investigation, and identifying concepts by himself, as in learning sports skills that depend on motor performance and teamwork,

... Show More
View Publication Preview PDF