The meniscus has a crucial function in human anatomy, and Magnetic Resonance Imaging (M.R.I.) plays an essential role in meniscus assessment. It is difficult to identify cartilage lesions using typical image processing approaches because the M.R.I. data is so diverse. An M.R.I. data sequence comprises numerous images, and the attributes area we are searching for may differ from each image in the series. Therefore, feature extraction gets more complicated, hence specifically, traditional image processing becomes very complex. In traditional image processing, a human tells a computer what should be there, but a deep learning (D.L.) algorithm extracts the features of what is already there automatically. The surface changes become valuable when diagnosing a tissue sample. Small, unnoticeable changes in pixel density may indicate the beginning of cancer or tear tissue in the early stages. These details even expert pathologists might miss. Artificial intelligence (A.I.) and D.L. revolutionized radiology by enhancing efficiency and accuracy of both interpretative and non-interpretive jobs. When you look at AI applications, you should think about how they might work. Convolutional Neural Network (C.N.N.) is a part of D.L. that can be used to diagnose knee problems. There are existing algorithms that can detect and categorize cartilage lesions, meniscus tears on M.R.I., offer an automated quantitative evaluation of healing, and forecast who is most likely to have recurring meniscus tears based on radiographs.
This research aims to knowledge the extent of the application of Tuz General Hospital to the concept of tacit knowledge dimensions (mental models, intuition, experience, skill) and methods of acquiring knowledge dimensions (training, job rotation, work teams) and the measurement and analysis of the link and the kind of impact between the methods of acquiring knowledge and tacit knowledge of the Angels nursing in the researched hospital, and was the questionnaire primary means of collecting information adopted by the researcher that, the research sample of (90) individuals, including the Angels nursing, has been using the statistical program spss for the purpose of conducting statistical treatments, and through the diagnosis and m
... Show MoreThis work deals with the effect of adding aluminum nanoparticles on the mechanical properties, micro-hardness and porosity of memory-shape alloys (Cu-Al-Ni). These alloys have wide applications in various industrial fields such as (high damping compounds and self-lubricating applications). The samples are manufactured using the powder metallurgy method, which involved pressing in only one direction and sintered in a furnace surrounded by an inert gas. Four percentages (0%, 5%, 10%, and 15%) of aluminum nanoparticles were fabricated, which depended on the weight of aluminum powder (13%) in the sample under study. To find out which phase is responsible for the reliability of the formation of this type of alloy and its porosity, X-ray diffr
... Show MoreThe present research was conducted to investigate the effectiveness of a training program to improve some aspects of sensory integration disorder and its effect on self-direction among a sample of children with intellectual disabilities. The study sample consists of (10 subjects as an experimental group) were exposed to the training program، and the control group consists of (10 subjects as a control group) were not exposed to the training program. The study included the following tools: A scale of self-direction for intellectual disability (prepared by the researcher). Training program (prepared by the researcher). The Results of the study showed the following: There are no statistically significant differences between the means ranks
... Show MorePDBN Rashid, International Journal of Development in Social Sciences and Humanities, 2023
Consider a simple graph on vertices and edges together with a total labeling . Then ρ is called total edge irregular labeling if there exists a one-to-one correspondence, say defined by for all where Also, the value is said to be the edge weight of . The total edge irregularity strength of the graph G is indicated by and is the least for which G admits edge irregular h-labeling. In this article, for some common graph families are examined. In addition, an open problem is solved affirmatively.
Praise be to Allah , the Lord of Heavens , Who revealed His Scripture in plain Arabic, and prayers and peace be upon the Master of all creatures and the chosen one , Muhammad (PBUH).Pushkin was known as a poet in Russia, the sun of its poetry that set, the father of the Russian literature and the founder of its literary language. When he published his poems, trying to express his inner poetic feelings and creative visions, he presented them with creativity and special touch. The reason behind the selection of Pushkin as the subject of this study is that he was affected by Islam and Arabs. For the purpose of this study, the dissertation has been divided into introduction and three chapters; each chapter includes two topics. In the introdu
... Show More