The meniscus has a crucial function in human anatomy, and Magnetic Resonance Imaging (M.R.I.) plays an essential role in meniscus assessment. It is difficult to identify cartilage lesions using typical image processing approaches because the M.R.I. data is so diverse. An M.R.I. data sequence comprises numerous images, and the attributes area we are searching for may differ from each image in the series. Therefore, feature extraction gets more complicated, hence specifically, traditional image processing becomes very complex. In traditional image processing, a human tells a computer what should be there, but a deep learning (D.L.) algorithm extracts the features of what is already there automatically. The surface changes become valuable when diagnosing a tissue sample. Small, unnoticeable changes in pixel density may indicate the beginning of cancer or tear tissue in the early stages. These details even expert pathologists might miss. Artificial intelligence (A.I.) and D.L. revolutionized radiology by enhancing efficiency and accuracy of both interpretative and non-interpretive jobs. When you look at AI applications, you should think about how they might work. Convolutional Neural Network (C.N.N.) is a part of D.L. that can be used to diagnose knee problems. There are existing algorithms that can detect and categorize cartilage lesions, meniscus tears on M.R.I., offer an automated quantitative evaluation of healing, and forecast who is most likely to have recurring meniscus tears based on radiographs.
A simple all optical fiber sensor based on multimode interference (MMI) for chemical liquids sensing was designed and fabricated. A segment of coreless fiber (CF) was spliced between two single mode fibers to buildup single mode-coreless-single mode (SCS) structure. Broadband source and optical signal analyzer were connected to the ends of SCS structure. De-ionized water, acetone, and n-hexane were used to test the performance of the sensor. Two influence factors on the sensitivity namely the length and the diameter of the CF were investigated. The obtained maximum sensitivity was at n-hexane at 340.89 nm/RIU (at a wavelength resolution of the optical spectrum analyzer of 0.02 nm) when the diameter of the CF reduced from 125 μm to 60 μ
... Show MoreAbstract :
This present paper sheds the light on dimensions of scheduling the service that includes( the easiness of performing the service, willingness , health factors, psychological sides, family matters ,diminishing the time of waiting that improve performance of nursing process including ( the willingness of performance, the ability to perform the performance , opportunity of performance) . There is genuine problem in the Iraqi hospitals lying into the weakness of nursing staffs , no central decision to define and organize schedules. Thus the researcher has chosen this problem as to be his title . The research come a to develop the nursing service
... Show MoreThe refractive index sensors based on tapered optical fiber are attractive for many industries due to sensing capability in a variety of application. In this paper, we proposed a refractive index sensor based on multicore fiber (MCF) sandwiched between two standard single mode fibers (SMF). The sensor consisting of three sections, SMF- MCF-SMF is structurally simple and can be easily produced by joining these parts. The MFC contains seven cores and these cores are surrounded by a single cladding. The sensing region is obtained by tapering the MCF section where the evanescent field is generated. The single mode propagating along the SMF is stimulated at the first joint and is coupled to the cladding modes. These modes interfere with the core
... Show MoreA novel robust finite time disturbance observer (RFTDO) based on an independent output-finite time composite control (FTCC) scheme is proposed for an air conditioning-system temperature and humidity regulation. The variable air volume (VAV) of the system is represented by two first-order mathematical models for the temperature and humidity dynamics. In the temperature loop dynamics, a RFTDO temperature (RFTDO-T) and an FTCC temperature (FTCC-T) are designed to estimate and reject the lumped disturbances of the temperature subsystem. In the humidity loop, a robust output of the FTCC humidity (FTCC-H) and RFTDO humidity (RFTDO-H) are also designed to estimate and reject the lumped disturbances of the humidity subsystem. Based on Lyapunov theo
... Show MoreA hybrid cadmium sulfide nanoparticles (CdSNPs) electroluminescence (EL) device was fabricated by Phase – Segregated Method and characterized. It was fabricated as layers of (ITO/poly-TPD:CdS ) and (ITO/poly-TPD:CdS /Alq3). Poly-TPD is an excellent Hole Transport Layer (HTL), CdSNPs is an emitting layer and Alq3 as electron transport layer (ETL). The EL of Organic-Inorganic Light Emitting Diode (OILED) was studied at room temperature at 26V. This was achieved according to band-to-band transition in CdSNPs. From the I-V curve behavior, the addition of Alq3 layer decreased the transfer of electrons by about 250 times. The I-V behavior for (poly-TPD/CdS) is exponential with a maximum current of 45
... Show MoreA hybrid cadmium sulfide nanoparticles (CdSNPs) electroluminescence (EL) device was fabricated by Phase – Segregated Method and characterized. It was fabricated as layers of (ITO/poly-TPD:CdS ) and (ITO/poly-TPD:CdS /Alq3). Poly-TPD is an excellent Hole Transport Layer (HTL), CdSNPs is an emitting layer and Alq3 as electron transport layer (ETL). The EL of Organic-Inorganic Light Emitting Diode (OILED) was studied at room temperature at 26V. This was achieved according to band-to-band transition in CdSNPs. From the I-V curve behavior, the addition of Alq3 layer decreased the transfer of electrons by about 250 times. The I-V behavior for (poly-TPD/CdS) is exponential with a maximum current of 4500 µA. While, the current i
... Show More