Preferred Language
Articles
/
1hctP48BVTCNdQwCxmVA
Knee Meniscus Segmentation and Tear Detection Based On Magnitic Resonacis Images: A Review of Literature
...Show More Authors

The meniscus has a crucial function in human anatomy, and Magnetic Resonance Imaging (M.R.I.) plays an essential role in meniscus assessment. It is difficult to identify cartilage lesions using typical image processing approaches because the M.R.I. data is so diverse. An M.R.I. data sequence comprises numerous images, and the attributes area we are searching for may differ from each image in the series. Therefore, feature extraction gets more complicated, hence specifically, traditional image processing becomes very complex. In traditional image processing, a human tells a computer what should be there, but a deep learning (D.L.) algorithm extracts the features of what is already there automatically. The surface changes become valuable when diagnosing a tissue sample. Small, unnoticeable changes in pixel density may indicate the beginning of cancer or tear tissue in the early stages. These details even expert pathologists might miss. Artificial intelligence (A.I.) and D.L. revolutionized radiology by enhancing efficiency and accuracy of both interpretative and non-interpretive jobs. When you look at AI applications, you should think about how they might work. Convolutional Neural Network (C.N.N.) is a part of D.L. that can be used to diagnose knee problems. There are existing algorithms that can detect and categorize cartilage lesions, meniscus tears on M.R.I., offer an automated quantitative evaluation of healing, and forecast who is most likely to have recurring meniscus tears based on radiographs.

Publication Date
Fri Apr 30 2021
Journal Name
Iraqi Journal Of Science
Iris Identification Based on the Fusion of Multiple Methods
...Show More Authors

Iris recognition occupies an important rank among the biometric types of approaches as a result of its accuracy and efficiency. The aim of this paper is to suggest a developed system for iris identification based on the fusion of scale invariant feature transforms (SIFT) along with local binary patterns of features extraction. Several steps have been applied. Firstly, any image type was converted to  grayscale. Secondly, localization of the iris was achieved using circular Hough transform. Thirdly, the normalization to convert the polar value to Cartesian using Daugman’s rubber sheet models, followed by histogram equalization to enhance the iris region. Finally, the features were extracted by utilizing the scale invariant feature

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Sat Feb 27 2021
Journal Name
Iraqi Journal Of Science
Approximation of Modified Baskakov Operators Based on Parameter s
...Show More Authors

In this article, we define and study a family of modified Baskakov type operators based on a parameter . This family is a generalization of the classical Baskakov sequence. First, we prove that it converges to the function being approximated. Then, we find a Voronovsky-type formula and obtain that the order of approximation of this family is . This order is better than the order of the classical Baskakov sequence  whenever . Finally, we apply our sequence to approximate two test functions and analyze the numerical results obtained.

View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Thu Apr 25 2019
Journal Name
Engineering And Technology Journal
Improvement of Harris Algorithm Based on Gaussian Scale Space
...Show More Authors

Features is the description of the image contents which could be corner, blob or edge. Corners are one of the most important feature to describe image, therefore there are many algorithms to detect corners such as Harris, FAST, SUSAN, etc. Harris is a method for corner detection and it is an efficient and accurate feature detection method. Harris corner detection is rotation invariant but it isn’t scale invariant. This paper presents an efficient harris corner detector invariant to scale, this improvement done by using gaussian function with different scales. The experimental results illustrate that it is very useful to use Gaussian linear equation to deal with harris weakness.

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Mar 21 2022
Journal Name
International Journal For Research In Applied Sciences And Biotechnology
Article Review: Toll-like Receptors and COVID-19
...Show More Authors

By March 2020, a pandemic had been emerged Corona Virus Infection in 2019 (COVID-19), which was triggered through the sensitive pulmonary syndrome (SARS disease corona virus- 2 (SARS COV-2). Overall precise path physiology of SARS COV-2 still unknown, as does the involvement of every element of the acute or adaptable immunity systems. Additionally, evidence from additional corona virus groups, including SARS COV as well as the Middle East pulmonary disease, besides that, fresh discoveries might help researchers fully comprehend SARS CoV-2. Toll-like receptors (TLRs) serve a critical part in both detection of viral particles as well as the stimulation of the body's immune response. When TLR systems are activated, pro-inflammatory cy

... Show More
View Publication
Crossref
Publication Date
Tue Jun 01 2021
Journal Name
Iraqi Journal Of Physics
Studying Audio Capacity as Carrier of Secret Images in Steganographic System
...Show More Authors

Steganography art is a technique for hiding information where the unsuspicious cover signal carrying the secret information. Good steganography technique must be includes the important criterions robustness, security, imperceptibility and capacity. The improving each one of these criterions is affects on the others, because of these criterions are overlapped each other.  In this work, a good high capacity audio steganography safely method has been proposed based on LSB random replacing of encrypted cover with encrypted message bits at random positions. The research also included a capacity studying for the audio file, speech or music, by safely manner to carrying secret images, so it is difficult for unauthorized persons to suspect

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Oct 30 2023
Journal Name
Iraqi Journal Of Science
New Class of Conjugate Gradient Methods for Removing Impulse Noise Images
...Show More Authors

The conjugate coefficient optimal is the very establishment of a variety of  conjugate gradient methods. This paper proposes a new class coefficient of conjugate gradient (CG) methods for impulse noise removal, which is based on the quadratic model. Our proposed method ensures descent independent of the accuracy of the line search and it is globally convergent under some conditions, Numerical experiments are also presented for the impulse noise removal in images.

View Publication Preview PDF
Scopus Crossref
Publication Date
Sun Aug 06 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Calculating Techniques for The Contrast of Images Which Have Different Illuminations
...Show More Authors

      The distortion, which occurs to the image often affects the existing amount of information, weakens its sharpness, decreases its contrast, thus leads to overlapping details of the various regions, and decreases image resolution. Test images are used to determine the image quality and ability of different visual systems, as we depended in our study on test image, half black and half white. Contrast was studied in the petition so as to propose several new methods for different contrasts in the edge of images where the results of technical differences would identify contrast image under different lighting conditions.

View Publication Preview PDF
Publication Date
Thu May 10 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
An Improvement of MRI Brain Images Classification Using Dragonfly Algorithm as Trainer of Artificial Neural Network
...Show More Authors

  Computer software is frequently used for medical decision support systems in different areas. Magnetic Resonance Images (MRI) are widely used images for brain classification issue. This paper presents an improved method for brain classification of MRI images. The proposed method contains three phases, which are, feature extraction, dimensionality reduction, and an improved classification technique. In the first phase, the features of MRI images are obtained by discrete wavelet transform (DWT). In the second phase, the features of MRI images have been reduced, using principal component analysis (PCA). In the last (third) stage, an improved classifier is developed. In the proposed classifier, Dragonfly algorithm is used instead

... Show More
View Publication Preview PDF
Crossref (14)
Crossref
Publication Date
Sat Mar 01 2008
Journal Name
Iraqi Journal Of Physics
Influence of Gold Concentration on the Main Detection Parameters of Ge-Au Photoconductive Detector
...Show More Authors

Ge-Au infrared photoconductive detection was prepared from germanium single crystal which were doped with different gold concentration using thermal evaporation. The spectral resonsivity (Rλ), spectral detectivity (D*) were determined as function of wavelength, also the resistance, conductivity in dark and with illumination to infrared radiation, the gain and relative photo response have been measured with different gold concentration. Remarkable improvements in the photoresponse gain were observed for the highest resistance specimen at the expense of spectral detectivity values.

View Publication Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of Pharmaceutical Negative Results
The diagnostic value of Paraoxonase (PON 1) enzyme activity in the diagnosis of knee joint osteoarthritis: case control study
...Show More Authors

View Publication
Scopus Crossref