The meniscus has a crucial function in human anatomy, and Magnetic Resonance Imaging (M.R.I.) plays an essential role in meniscus assessment. It is difficult to identify cartilage lesions using typical image processing approaches because the M.R.I. data is so diverse. An M.R.I. data sequence comprises numerous images, and the attributes area we are searching for may differ from each image in the series. Therefore, feature extraction gets more complicated, hence specifically, traditional image processing becomes very complex. In traditional image processing, a human tells a computer what should be there, but a deep learning (D.L.) algorithm extracts the features of what is already there automatically. The surface changes become valuable when diagnosing a tissue sample. Small, unnoticeable changes in pixel density may indicate the beginning of cancer or tear tissue in the early stages. These details even expert pathologists might miss. Artificial intelligence (A.I.) and D.L. revolutionized radiology by enhancing efficiency and accuracy of both interpretative and non-interpretive jobs. When you look at AI applications, you should think about how they might work. Convolutional Neural Network (C.N.N.) is a part of D.L. that can be used to diagnose knee problems. There are existing algorithms that can detect and categorize cartilage lesions, meniscus tears on M.R.I., offer an automated quantitative evaluation of healing, and forecast who is most likely to have recurring meniscus tears based on radiographs.
In most recent studies, long-term retention after orthodontic treatment has been hypothesized that may be necessary to maintain the stability of the dentition and avoid post-treatment changes. The bonded fixed retainer is characterized by its clinical effectiveness, patient acceptance, and lack of patient complaints as compared with a removable retainer. An electronic database (such as PubMed, PubMed Central, Web of Science, Science Direct, Cochrane Library, Scopus, and ResearchGate) has been collected using specific keywords. Of the 152 articles, only randomized clinical trials that investigated different types of fixed retainers or compared fixed with removable retainers were illustrated in tables and included in this review. The
... Show MoreBackground: Rheumatoid arthritis (RA) is a chronic and systemic autoimmune disease that is characterized by severe synovial inflammation, cartilage erosion, bone loss, and generalized vasculopathy. Although the immunologic mechanism of RA is still unclear, it is now thought to be a primarily Th17-driven disease. Along with other factors, IL-23 stimulates the expansion of Th17 cells from naive CD4+ T cells.
Objective: The objective of this study is to assess the circulating levels of interleukin (IL)-23 in rheumatoid arthritis (RA) and determine the correlation between plasma/serum IL-23 levels and disease activity. So, we performed a systematic review with meta-analysis comparing
... Show MoreIntroduction and Aim: Pseudomonas aeruginosa is a nosocomial infection with an ability to develop high levels of antibiotic resistance. The efflux pump system is one of the mechanisms that is linked to multidrug resistance in P. aeruginosa. In this study, we employed siRNA loaded on gold nanoparticles against the MexA efflux pump gene to decrease the MexA gene expression in P. aeruginosa and estimated antibiotic resistance after gene silencing. Materials and Methods: This study examined four strains of P. aeruginosa isolated from patients in various hospitals in Baghdad. Bacteria isolated were identified by biochemical tests and Vitek compact 2 system. Single-stranded siRNA (33bp) designed in this study was loaded onto gold
... Show MoreMedicine is one of the fields where the advancement of computer science is making significant progress. Some diseases require an immediate diagnosis in order to improve patient outcomes. The usage of computers in medicine improves precision and accelerates data processing and diagnosis. In order to categorize biological images, hybrid machine learning, a combination of various deep learning approaches, was utilized, and a meta-heuristic algorithm was provided in this research. In addition, two different medical datasets were introduced, one covering the magnetic resonance imaging (MRI) of brain tumors and the other dealing with chest X-rays (CXRs) of COVID-19. These datasets were introduced to the combination network that contained deep lea
... Show MoreSome of the main challenges in developing an effective network-based intrusion detection system (IDS) include analyzing large network traffic volumes and realizing the decision boundaries between normal and abnormal behaviors. Deploying feature selection together with efficient classifiers in the detection system can overcome these problems. Feature selection finds the most relevant features, thus reduces the dimensionality and complexity to analyze the network traffic. Moreover, using the most relevant features to build the predictive model, reduces the complexity of the developed model, thus reducing the building classifier model time and consequently improves the detection performance. In this study, two different sets of select
... Show MoreAs an important resource, entanglement light source has been used in developing quantum information technologies, such as quantum key distribution(QKD). There are few experiments implementing entanglement-based deterministic QKD protocols since the security of existing protocols may be compromised in lossy channels. In this work, we report on a loss-tolerant deterministic QKD experiment which follows a modified “Ping-Pong”(PP) protocol. The experiment results demonstrate for the first time that a secure deterministic QKD session can be fulfilled in a channel with an optical loss of 9 dB, based on a telecom-band entangled photon source. This exhibits a conceivable prospect of ultilizing entanglement light source in real-life fiber-based
... Show MoreIn this article, Convolution Neural Network (CNN) is used to detect damage and no damage images form satellite imagery using different classifiers. These classifiers are well-known models that are used with CNN to detect and classify images using a specific dataset. The dataset used belongs to the Huston hurricane that caused several damages in the nearby areas. In addition, a transfer learning property is used to store the knowledge (weights) and reuse it in the next task. Moreover, each applied classifier is used to detect the images from the dataset after it is split into training, testing and validation. Keras library is used to apply the CNN algorithm with each selected classifier to detect the images. Furthermore, the performa
... Show MoreActive learning is a teaching method that involves students actively participating in activities, exercises, and projects within a rich and diverse educational environment. The teacher plays a role in encouraging students to take responsibility for their own education under their scientific and pedagogical supervision and motivates them to achieve ambitious educational goals that focus on developing an integrated personality for today’s students and tomorrow’s leaders. It is important to understand the impact of two proposed strategies based on active learning on the academic performance of first-class intermediate students in computer subjects and their social intelligence. The research sample was intentionally selected, consis
... Show More