Soil compaction is one of the most harmful elements affecting soil structure, limiting plant growth and agricultural productivity. It is crucial to assess the degree of soil penetration resistance to discover solutions to the harmful consequences of compaction. In order to obtain the appropriate value, using soil cone penetration requires time and labor-intensive measurements. Currently, satellite technologies, electronic measurement control systems, and computer software help to measure soil penetration resistance quickly and easily within the precision agriculture applications approach. The quantitative relationships between soil properties and the factors affecting their diversity contribute to digital soil mapping. Digital soil maps use machine learning algorithms to determine the above relationship. Algorithms include multiple linear regression (MLR), k-nearest neighbors (KNN), support vector regression (SVR), cubist, random forest (RF), and artificial neural networks (ANN). Machine learning made it possible to predict soil penetration resistance from huge sets of environmental data obtained from onboard sensors on satellites and other sources to produce digital soil maps based on classification and slope, but whose output must be verified if they are to be trusted. This review presents soil penetration resistance measurement systems, new technological developments in measurement systems, and the contribution of precision agriculture techniques and machine learning algorithms to soil penetration resistance measurement and prediction.
Empirical and statistical methodologies have been established to acquire accurate permeability identification and reservoir characterization, based on the rock type and reservoir performance. The identification of rock facies is usually done by either using core analysis to visually interpret lithofacies or indirectly based on well-log data. The use of well-log data for traditional facies prediction is characterized by uncertainties and can be time-consuming, particularly when working with large datasets. Thus, Machine Learning can be used to predict patterns more efficiently when applied to large data. Taking into account the electrofacies distribution, this work was conducted to predict permeability for the four wells, FH1, FH2, F
... Show MoreIn many oil fields only the BHC logs (borehole compensated sonic tool) are available to provide interval transit time (Δtp), the reciprocal of compressional wave velocity VP.
To calculate the rock elastic or inelastic properties, to detect gas-bearing formations, the shear wave velocity VS is needed. Also VS is useful in fluid identification and matrix mineral identification.
Because of the lack of wells with shear wave velocity data, so many empirical models have been developed to predict the shear wave velocity from compressional wave velocity. Some are mathematical models others used the multiple regression method and neural network technique.
In this study a number of em
... Show MoreFerritin is a key organizer of protected deregulation, particularly below risky hyperferritinemia, by straight immune-suppressive and pro-inflammatory things. , We conclude that there is a significant association between levels of ferritin and the harshness of COVID-19. In this paper we introduce a semi- parametric method for prediction by making a combination between NN and regression models. So, two methodologies are adopted, Neural Network (NN) and regression model in design the model; the data were collected from مستشفى دار التمريض الخاص for period 11/7/2021- 23/7/2021, we have 100 person, With COVID 12 Female & 38 Male out of 50, while 26 Female & 24 Male non COVID out of 50. The input variables of the NN m
... Show MoreThe reduction in the rivers capacity is one the most important issue to give the decision maker an idea during the flood season. The study area included the rivers of the Al Atshan, Al Sabeel and Euphrates, which are surveyed with a length of 21, 5 and 20 km respectively. The Euphrates , the Atshan and Al Sabeel rivers were simulated by using HEC-RAS 5.0.3 software to study the real condition within the city of Assamawa. As well as the simulation was implemented by modifying the cross sections of the Euphrates and Al Sabeel rivers to increase their capacity to 1300 and 1200 m3/s respectively which are a flood discharges100 year return periods. The results showed that the maximum discharge capacity under real conditions o
... Show MorePlastic soil exhibits unfavorited geotechnical properties (when saturation), which causes negative defects to engineering structures. Different attempts (included various materials) were conducted to proffer solutions to such defects by experimenting in practical ways. On one hand, these attempts aimed to improve the engineering characteristics of plastic soil, and on the other hand, to use problematic waste materials as a stabilizer, like cement kiln dust, and to reduce environmental hazards. This paper explored the shrinkage, plasticity, and strength behavior of plastic soil enhanced with cement dust. The cement dust contents were 0%, 5%, 10%, 15% and 20% by dry weight of soil. An experimental series of shrinkage and p
... Show MoreIn this study, the response and behavior of machine foundations resting on dry and saturated sand was investigated experimentally. A physical model was manufactured to simulate steady state harmonic load at different operating frequencies. The effect of relative density, depth of embedment, foundation area as well as the imposed harmonic load was investigated. It was found that the amplitude of displacement of the foundation increases with increasing the amplitude of dynamic force and operating frequency meanwhile it decreases with increasing the relative density of sand, degree of saturation, depth of embedment and contact area of footing. The maximum displacement was noticed at 33.34 to 41.67 Hz. The maximum displacement amplitude respons
... Show MoreIn this study, the response and behavior of machine foundations resting on dry and saturated sand was investigated experimentally. A physical model was manufactured to simulate steady state harmonic load at different operating frequencies. The effect of relative density, depth of embedment, foundation area as well as the imposed harmonic load was investigated. It was found that the amplitude of displacement of the foundation increases with increasing the amplitude of dynamic force and operating frequency meanwhile it decreases with increasing the relative density of sand, degree of saturation, depth of embedment and contact area of footing. The maximum displacement was noticed at 33.34 to 41.67 Hz. The maximum displaceme
... Show MoreAbstract
This study was conducted by using soil map of LD7 project to interpret the
distribution and shapes of map units by using the index of compaction as an
index of map unit shape explanation. Where there were wide and varied
ranges of compaction index of map units, where the maximum value was
0.892 for MF9 map unit and the lower value was 0.010 for same map unit.
MF9 has wide range appearance of index of compaction after those indices
were statistically analyzed by using cluster analysis to group the similar
ranges together to ease using their values, so the unit MF9 was considered as
key map unit that appears in the soils of LD7 project which may be used to
expect another map units existence in area of