Soil compaction is one of the most harmful elements affecting soil structure, limiting plant growth and agricultural productivity. It is crucial to assess the degree of soil penetration resistance to discover solutions to the harmful consequences of compaction. In order to obtain the appropriate value, using soil cone penetration requires time and labor-intensive measurements. Currently, satellite technologies, electronic measurement control systems, and computer software help to measure soil penetration resistance quickly and easily within the precision agriculture applications approach. The quantitative relationships between soil properties and the factors affecting their diversity contribute to digital soil mapping. Digital soil maps use machine learning algorithms to determine the above relationship. Algorithms include multiple linear regression (MLR), k-nearest neighbors (KNN), support vector regression (SVR), cubist, random forest (RF), and artificial neural networks (ANN). Machine learning made it possible to predict soil penetration resistance from huge sets of environmental data obtained from onboard sensors on satellites and other sources to produce digital soil maps based on classification and slope, but whose output must be verified if they are to be trusted. This review presents soil penetration resistance measurement systems, new technological developments in measurement systems, and the contribution of precision agriculture techniques and machine learning algorithms to soil penetration resistance measurement and prediction.
In this research, a selection of some mineral water was selected on the basis of being the most marketed by the owners of shops in Najaf province, with six types, where daily samples of this water were taken by 50 ml for two months from (1/11/2018 -1/1/2019). The following ions concentrations were measured (Br-, Cl-, F-, NO3-, SO42-, Na+, K+, Ca2+, Mg2+), pH and the electrical conductivity were measured and the results were compared with the allowable rates according to the international organizations. It was noted that they conform to international and Iraqi standards.
Empirical and statistical methodologies have been established to acquire accurate permeability identification and reservoir characterization, based on the rock type and reservoir performance. The identification of rock facies is usually done by either using core analysis to visually interpret lithofacies or indirectly based on well-log data. The use of well-log data for traditional facies prediction is characterized by uncertainties and can be time-consuming, particularly when working with large datasets. Thus, Machine Learning can be used to predict patterns more efficiently when applied to large data. Taking into account the electrofacies distribution, this work was conducted to predict permeability for the four wells, FH1, FH2, F
... Show MoreThe distribution of chilled water flow rate in terminal unit is a major factor used to evaluate the performance of central air conditioning unit. In this work, a theoretical chilled water distribution in the terminal units has been studied to predict the optimum heat performance of terminal unit. The central Air-conditioning unit model consists of cooling/ heating coil (three units), chilled water source (chiller), three-way and two-way valve with bypass, piping network, and pump. The term of optimization in terminal unit ingredient has two categories, the first is the uniform of the water flow rate representing in statically permanents standard deviation (minimum value) and the second category is the maximum heat transfer rate fro
... Show MoreCorrelation equations for expressing the boiling temperature as direct function of liquid composition have been tested successfully and applied for predicting azeotropic behavior of multicomponent mixtures and the kind of azeotrope (minimum, maximum and saddle type) using modified correlation of Gibbs-Konovalov theorem. Also, the binary and ternary azeotropic point have been detected experimentally using graphical determination on the basis of experimental binary and ternary vapor-liquid equilibrium data.
In this study, isobaric vapor-liquid equilibrium for two ternary systems: “1-Propanol – Hexane – Benzene” and its binaries “1-Propanol –
... Show MoreLost circulation or losses in drilling fluid is one of the most important problems in the oil and gas industry, and it appeared at the beginning of this industry, which caused many problems during the drilling process, which may lead to closing the well and stopping the drilling process. The drilling muds are relatively expensive, especially the muds that contain oil-based mud or that contain special additives, so it is not economically beneficial to waste and lose these muds. The treatment of drilling fluid losses is also somewhat expensive as a result of the wasted time that it caused, as well as the high cost of materials used in the treatment such as heavy materials, cement, and others. The best way to deal with drilling fluid losses
... Show MoreThe performance of a solar cell under sun radiation is necessary to describe the electrical parameters of the cell. The Prova 200 solar panel analyzer is used for the professional testing of four solar cells at Baghdad climate conditions. Voltage -current characteristics of different area solar cells operated under solar irradiation for testing their quality and determining the optimal operational parameters for maximum electrical output were obtained. A correlation is developed between solar cell efficiency h and the corresponding solar cell parameters; solar irradiance G, maximum power Pmax, and production date P. The average absolute error of the proposed correlation is 5.5% for 40 data points. The results also show th
... Show More