Soil compaction is one of the most harmful elements affecting soil structure, limiting plant growth and agricultural productivity. It is crucial to assess the degree of soil penetration resistance to discover solutions to the harmful consequences of compaction. In order to obtain the appropriate value, using soil cone penetration requires time and labor-intensive measurements. Currently, satellite technologies, electronic measurement control systems, and computer software help to measure soil penetration resistance quickly and easily within the precision agriculture applications approach. The quantitative relationships between soil properties and the factors affecting their diversity contribute to digital soil mapping. Digital soil maps use machine learning algorithms to determine the above relationship. Algorithms include multiple linear regression (MLR), k-nearest neighbors (KNN), support vector regression (SVR), cubist, random forest (RF), and artificial neural networks (ANN). Machine learning made it possible to predict soil penetration resistance from huge sets of environmental data obtained from onboard sensors on satellites and other sources to produce digital soil maps based on classification and slope, but whose output must be verified if they are to be trusted. This review presents soil penetration resistance measurement systems, new technological developments in measurement systems, and the contribution of precision agriculture techniques and machine learning algorithms to soil penetration resistance measurement and prediction.
At the level of both individuals and companies, Wireless Sensor Networks (WSNs) get a wide range of applications and uses. Sensors are used in a wide range of industries, including agriculture, transportation, health, and many more. Many technologies, such as wireless communication protocols, the Internet of Things, cloud computing, mobile computing, and other emerging technologies, are connected to the usage of sensors. In many circumstances, this contact necessitates the transmission of crucial data, necessitating the need to protect that data from potential threats. However, as the WSN components often have constrained computation and power capabilities, protecting the communication in WSNs comes at a significant performance pena
... Show MoreThe detection of diseases affecting plant is very important as it relates to the issue of food security, which is a very serious threat to human life. The system of diagnosis of diseases involves a series of steps starting with the acquisition of images through the pre-processing, segmentation and then features extraction that is our subject finally the process of classification. Features extraction is a very important process in any diagnostic system where we can compare this stage to the spine in this type of system. It is known that the reason behind this great importance of this stage is that the process of extracting features greatly affects the work and accuracy of classification. Proper selection of
... Show MoreThe majority of statisticians, if not most of them, are primarily concerned with the theoretical aspects of their field of work rather than their application to the practical aspects. Its importance as well as its direct impact on the development of various sciences. Although the theoretical aspect is the first and decisive basis in determining the degree of accuracy of any research work, we always emphasize the importance of the applied aspects that are clear to everyone, as well as its direct impact on the development of different sciences. The measurements of public opinion is one of the most important aspects of the application of statistics, which has taken today, a global resonance and has become a global language that everyone can
... Show MoreThe aim of the research is to identify the losses resulting from the terrorist operations and then find a proposed accounting treatment for the losses resulting from the terrorist operations and to indicate their impact on disclosure in the financial statements by reviewing the international standards and local rules and the unified accounting system and not dealing with these losses, Of the financial statements and therefore adversely affect the accounting disclosure as well as the weak commitment of economic units to apply the requirements of accounting measurement and disclosure of losses of terrorist operations in a manner consistent with local and international standards to achieve the Reliability in the financial statement.
In this study, the amounts of activity concentrations of naturally occurring in 10 soil samples of the Tigris river and surrounding areas collected from deferent city of Baghdad have been investigated. Tigris river is an important water source for irrigation and drinking in Iraq. This study was done during 2018 in Protection Center of the Iraqi Ministry of Health and Environment using a high purity germanium detector. The resolution of (HPGe) at 2keV and 30% efficiency. The results of soil sample obtained showed that the effective activity concentration of 40K are ranged from 181.4 Bq/kg in sample S6 to 286.4 Bq/kg in S7. For Raeq values are ranged from 6 Bq/m3 in sample S5 to 17 Bq/m3 in sample S3. The obtained data revealed that the me
... Show MoreData generated from modern applications and the internet in healthcare is extensive and rapidly expanding. Therefore, one of the significant success factors for any application is understanding and extracting meaningful information using digital analytics tools. These tools will positively impact the application's performance and handle the challenges that can be faced to create highly consistent, logical, and information-rich summaries. This paper contains three main objectives: First, it provides several analytics methodologies that help to analyze datasets and extract useful information from them as preprocessing steps in any classification model to determine the dataset characteristics. Also, this paper provides a comparative st
... Show MoreText categorization refers to the process of grouping text or documents into classes or categories according to their content. Text categorization process consists of three phases which are: preprocessing, feature extraction and classification. In comparison to the English language, just few studies have been done to categorize and classify the Arabic language. For a variety of applications, such as text classification and clustering, Arabic text representation is a difficult task because Arabic language is noted for its richness, diversity, and complicated morphology. This paper presents a comprehensive analysis and a comparison for researchers in the last five years based on the dataset, year, algorithms and the accuracy th
... Show MoreThe aim of this paper, is to discuss several high performance training algorithms fall into two main categories. The first category uses heuristic techniques, which were developed from an analysis of the performance of the standard gradient descent algorithm. The second category of fast algorithms uses standard numerical optimization techniques such as: quasi-Newton . Other aim is to solve the drawbacks related with these training algorithms and propose an efficient training algorithm for FFNN