In this study, iron oxide nanoparticles (α-Fe₂O₃ NPs) were prepared using a readily available chili pepper plant extract from local markets. This study aims to evaluate the magnetic properties of α-Fe₂O₃ prepared in green chemistry from Capsicum plant extract. After several simple preparatory steps, such as washing and cutting, they were treated with an inorganic complex (potassium hexacyanoferrate) (K3[Fe(CN)₆]). In the first analytical step, the in vitro detection of the plant extract solution after reaction with the potassium hexacyanoferrate (III) complex revealed characteristic adsorption bands of the cyanide group, which disappeared upon complexation. The iron oxide NPs were characterized using various methods, including X-ray diffraction, energy-dispersive X-ray spectroscopy, scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. The second step, testing the magnetic properties, was conducted using a vibrating sample magnetometer, which revealed strong magnetic properties. This novel method utilizes green chemistry to identify superparamagnetic properties.
This research focuses on the characteristics of polyvinyl alcohol and starch polymer blends doping with Rhodamine-B. The polymer blends were prepared using the solution cast method, which comprises 1:1(wt. /wt.). The polymer blends of PVA and starch with had different ratios of glycerin 0, 25, 30, 35, and 40 % wt. The ratio of 30% wt of glycerin was found to be the most suitable mechanical properties by strength and elasticity. The polymer blend of 1:1 wt ratios of starch/PVA and 30% wt of glycerin were doped with different ratios of Rhoda mine-B dye 0, 1, 2, 3, 4, 5, and 6% wt and the electrical properties of doping biodegradable blends were studied. The ratio of Rhodamine-B 5% wt to the polymer blends showed hi
... Show MoreThe work concerned with studying the effect of (SiO2) addition as a
filler on the adhesive properties of (PVA). Samples were prepared as
sheets by using casting method. The mechanical properties showed
that increase in tensile strength from (34MPa) to (68MPa) when
(SiO2) added to (PVA). The adhesive strength showed that joint
properties depend upon specific adhesive characteristic of material
(PVA) and (SiO2\PVA)composites at different concentrations (1.5%,
2.5%, 3.5%, 4.5wt%), the cohesive strength of the adhesive material,
the joint design, and adherent type (Sponge Rubber(SR), Natural
leather (NL), Vulcanized Rubber(VR), and Cartoon). The results
proved the tensile strength increased with (SiO2) ratio, so
Copper tin sulfide (Cu2SnS3) thin films have been grown on glass
substrate with different thicknesses (500, 750 and 1000) nm by flash
thermal evaporation method after prepare its alloy from their
elements with high purity. The as-deposited films were annealed at
473 K for 1h. Compositional analysis was done using Energy
dispersive spectroscopy (EDS). The microstructure of CTS powder
examined by SEM and found that the large crystal grains are shown
clearly in images. XRD investigation revealed that the alloy was
polycrystalline nature and has cubic structure with preferred
orientation along (111) plane, while as deposited films of different
thickness have amorphous structure and converted to polycrystalline
Superconducting thin films of Bi1.6Pb0.4Sr2Ca2Cu2.2Zn0.8O10 system were prepared by depositing the film onto silicon (111) substrate by pulsed laser deposition. Annealing treatment and superconducting properties were investigated by XRD and four probe resistivity measurement. The analysis reveals the evolution of the minor phase of the films 2212 phase to 2223 phase, when the film was annealed at 820 °C. Also the films have superconducting behavior with transition temperature ≥90K.
The electronic properties and Hall effect of thin amorphous Si1-xGex:H films of thickness (350 nm) have been studied such as dc conductivity, activation energy, Hall coefficient under magnetic field (0.257 Tesla) for measuring carrier density of electrons and holes and Hall mobility as a function of germanium content (x = 0–1), deposition temperature (303-503) K and dopant concentration for Al and As in the range (0-3.5)%. The composition of the alloys and films were determined by using energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS).
This study showed that dc conductivity of a-Si1-xGex:H thin films is found to increase with increasing Ge content and dopant concentration, whereas conductivity activati
This research study the effect of Titanium dioxide on the tensile properties of
Polystyrene (PS) and Polycarbonate (PC) polymers. The stress – strain curve for pure PS
and pure PC, shows that Young modulus for PS is higher than Young modulus for PC,
because PS have higher ultimate strength than PC.
The addition of TiO2 to PS and PC will reduce the Young modulus and ultimate stress,
because the TiO2 particles will reduces or freeze the orientation of these molecular chain
and reduced the toughness of PC, while when the TiO2 were added to PS, the value of
toughness will be stabilized because TiO2 particles make these chains interlocked and the
mobility of the chains will be restrict.
In the present study a new synthesis method has been introduced for the decoration of platinum(Pt) on the functionalized graphene nanoplatelet (GNP) and also highlighted the preparation method of nanofluids. GNP–Pt uniform nanocomposite was produced from a simple chemical reaction procedure, which included acid treatment for functionalization of GNP. The surface characterization was performed by various techniques such as XRD, FESEMand TEM. The effective thermal conductivity, density, viscosity, specific heat capacity and stability of functionalized GNP–Pt water based nanofluids were investigated in different instruments. The GNP–Pt hybrid nanofluids were prepared by dispersing the nanocomposite in base fluid without adding any surfac
... Show MoreDrilling fluid properties and formulation play a fundamental role in drilling operations. The Classical water-based muds prepared from only the Syrian clay and water without any additives((Organic and industrial polymers) are generally poor in performance. Moreover, The high quantity of Syrian clay (120 gr / l) used in preparing drilling fluids. It leads to a decrease in the drilling speed and thus an increase in the time required to complete the drilling of the well. As a result, the total cost of drilling the well increased, as a result of an increase in the concentration of the solid part in the drilling fluid. In this context, our study focuses on the investigation of the improvement in drilling mud Prepa
... Show MoreIn the present study, multi-walled carbon nanotubes (MWCNTs) with outside diameters of< 8 nm and 20−30 nm were covalently functionalized with β-Alanine using a novel synthesis procedure. The functionalization process was proved successful using Raman spectroscopy, FTIR, and TEM. Utilizing the two-step method with ultrasonication, the MWCNTs treated with β-Alanine (Ala-MWCNTs) with weight concentrations of 0.025%, 0.05%, 0.075%, and 0.1% were dispersed in distilled water to prepare water-based nanofluids. The aqueous colloidal dispersions of pristine MWCNTs were unstable. While for Ala-MWCNTs and after> 50 days from preparation, higher colloidal stability was obtained up to relative concentration of 0.955 and 0.939 for the 0.075-wt% samp
... Show More