Radiotherapy is the branch of clinical medicine concerned with the application of ionizing radiation in the treatment of disease. And it is used to killing of cancer cells in a tissue using ionizing radiation while keeping the sparing of healthy cells at acceptable level. X-ray beams are used to deposit absorbed dose at depth within a patient at the site of the tumor. The aim of this work is studying the relationship between the depth dose and the field size in water phantom and homogenous actual planning. In our work, the dose distribution at different depths (zero-18 cm) deep at1cm interval treated with field size (10×10 and 20×20) cm2 were studied. Results show that high similarity between water phantom and actual planning for this reason water is taken as phantom for Quality Assurance (QA) and calculation the depth dose. When increasing the field size, the percentage of surface dose increases that this could be caused by an increase of the amount of scattering in the larger fields. Conclusion: There is almost no difference in depth dose between homogenous planning and water phantom
Industries copper a craft that requires precision and patience great in the processes of industrialization and execution of product launches brass designs and a variety of forms , and the goal of research into the possibility of the use of modern technologies in the development of industries copper local , and identifies research study models of industries copper local to the city of Baghdad , and are available in the markets for the period from (200 - 2011) , Chapter II Multi industries copper local and technical in the copper industry , and after analysis models the sample was the most important conclusions : can work forms a multi- product copper formations deep or window using the technique work motifs and patterns. - formations deco
... Show MoreThe nucleon momentum distributions (NMD) for the ground state and elastic electron scattering form factors have been calculated in the framework of the coherent fluctuation model and expressed in terms of the weight function (fluctuation function). The weight function has been related to the nucleon density distributions of nuclei and determined from theory and experiment. The nucleon density distributions (NDD) is derived from a simple method based on the use of the single particle wave functions of the harmonic oscillator potential and the occupation numbers of the states. The feature of long-tail behavior at high momentum region of the NMD has been obtained using both the theoretical and experimental weight functions. The observed ele
... Show MoreThis paper proposes a new approach to model and analyze erect posture, based on a spherical inverted pendulum which is used to mimic the body posture. The pendulum oscillates in two directions, [Formula: see text] and [Formula: see text], from which the mathematical model was derived and two torque components in oscillation directions were introduced. They are estimated using stabilometric data acquired by a foot pressure mapping system. The model was quantitatively investigated using data from 19 participants, who were first were classified into three groups, according to the foot arch-index. Stabilometric data were then collected and fed into the model to estimate the torque’s components. The components were statistically proce
... Show MoreThe ground state proton, neutron and matter densities of exotic 11Be and 15C nuclei are studied by means of the TFSM and BCM. In TFSM, the calculations are based on using different model spaces for the core and the valence (halo) neutron. Besides single particle harmonic oscillator wave functions are employed with two different size parameters Bc and Bv. In BCM, the halo nucleus is considered as a composite projectile consisting of core and valence clusters bounded in a state of relative motion. The internal densities of the clusters are described by single particle Gaussian wave functions.
Elastic electron scattering proton f
... Show MoreFrom a group of 60 patients with dentoalveolar infections among which 10 were diabetic and 10 non-diabetic were elected as test group as well as 10 normal subjects as control group. Six Staphylococcus aureus and Streptococcus anginousus were diagnosed in the first and second group of the patients the immune status of the patients and control subject were tested by pathogen specific antibody titre, neotrophil NBT reduction phagocytosis and leukocyte inhibition LIF. Diabetic patients with dentoalveolar infection shows decreased specific antibody titers, subnormal neutrophil NBT phagocytic % as well as non significant LIF % in comparison non diabetic reveal high specific antibody titers against , high neutrophil NBT% and significant LIF% re
... Show Morethis paper contains preparation of Active carbon surface (AC) from pro so millet grain husks and Loading and activating by Iron oxide and hydrogen peroxide sequentially to obtain surface (ACIPE). The changes of previous processes on Active carbon surface were diagnosed by Fourier transform infrared spectroscopy (FTIR) and Scanning electron microscopy ( SEM ). These surfaces (AC and ACIPE ) were using as adsorbent for removing of congo red dye from aqueous solutions under certain conditions through batch system. More than one kinetic model was applied to congo red dye adsorption process and it was found that the most kinetic model applied to it is a model ( pseudo second order model).
The synthesized ligand (3-(2-amino-5-(3,4,5-tri-methoxybenzyl)pyrimidin-4-ylamino)-5,5-dimethylcyclohex-2-enone] [H1L1] was characterized via fourier transform infrared spectroscopy (FTIR), 1H, 13C – NMR, Mass spectra, (CHN analysis), UV-vis spectroscopic approaches. Analytical and spectroscopic techniques like chloride content, micro-analysis, magnetic susceptibility UV-visible, conductance, and FTIR spectra were used to identify mixed ligand complexes. Its (ML13ph) mixed ligand complexes [M= Co (II), Ni (II), Cu (II), Zn (II), and Cd (II); (H1L1) = β-enaminone ligand=L1 and (3ph) =3-aminophenol= L2]. The results demonstrate that the complexes are produced with a molar ratio of M: L1:L2 (1:1:1). To generate the appropriate compl
... Show MoreAbstract Background: The novel coronavirus 2 (SARS?CoV?2) pandemic is a pulmonary disease, which leads to cardiac, hematologic, and renal complications. Anticoagulants are used for COVID-19 infected patients because the infection increases the risk of thrombosis. The world health organization (WHO), recommend prophylaxis dose of anticoagulants: (Enoxaparin or unfractionated Heparin for hospitalized patients with COVID-19 disease. This has created an urgent need to identify effective medications for COVID-19 prevention and treatment. The value of COVID-19 treatments is affected by cost-effectiveness analysis (CEA) to inform relative value and how to best maximize social welfare through evidence-based pricing decisions. O
... Show More